Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(6): 9644-9655, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571194

ABSTRACT

This work proposes what we believe to be a novel Tamm plasmon-like resonance supporting structure consisting of an Au/SiO2 core-shell metal nanosphere structure surrounded by a TiO2/SiO2 spherical Bragg resonator (SBR). The cavity formed between the core metal particle and the SBR supports a localized mode similar to Tamm plasmons in planar dielectric multilayers. Theoretical simulations reveal a sharp absorption peak in the SBR bandgap region, associated with this mode, together with strong local field enhancement. We studied the modification of a dipolar electric emitter's radiative and non-radiative decay rates in this resonant structure, resulting in a quantum efficiency of ∼90% for a dipole at a distance of r=60n m from the Au nanosphere surface. A 30-layer metal-SBR Tamm plasmon-like resonant supporting structure results in a Q up to ∼103. The Tamm plasmon-like mode is affected by the Bragg wavelength and the number of layers of the SBR, and the thickness of the spacer cavity layer. These results will open a new avenue for generating high-Q Tamm plasmon-like modes for switches, optical logic computing devices, and nonlinear applications.

2.
Opt Express ; 32(1): 188-204, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175048

ABSTRACT

We present the experimental realization of an innovative parallel partially overlapping waveguides (PO-WGs) model grounded in the thermal accumulated regime and fabricated using femtosecond (fs) laser direct-writing within low-iron bulk glass. The 75mm long novel PO-WGs model was made by partially overlapping the shell parts of two core-shell types of waveguides via a back-and-forth single pass fs-laser inscription. The detailed evolution of the PO-WGs model from inception to completion was offered, accompanying by a thorough characterization, which unveils a substantial refractive index (RI) change, on the order of 10-3, alongside low propagation loss (0.2 dB/cm) and distinctive features associated with the single mode and shell-guided light. Notably, the unsaturated performance of PO-WGs model after the primary inscription paves the way for potential applications in the successful creation of two distinctive types of Bragg gratings: first-order dot-Bragg grating and second-order line-Bragg grating. The 75 mm long dot-Bragg grating was written by a periodic dot array with a height of 6 µm atop the PO-WGs, and the birefringence was measured of 1.5 × 10-5 with a 16 pm birefringence-induced wavelength difference. The line-Bragg grating, which was inscribed with dual PO-WGs extending the line grating part to 40 mm in length along its period for increasing the transmission dip, exhibits a pronounced polarization dependence showcasing an effective birefringence of 4.2 × 10-4 at the birefringence-induced wavelength difference of 0.45 nm. We delved into the slow-light effects of the two Bragg gratings thoroughly, which the theoretical analysis revealed an effective group delay of 0.58 ns (group index 2.3) for the dot-Bragg grating. Similarly, the line-Bragg grating exhibited an effective group delay of 0.3 ns (group index 2.3), in good agreement with experimental measurements. These findings underscore the exciting potential of our gratings for creating optical slow-wave structures, particularly for future on-chip applications.

3.
Sci Rep ; 13(1): 20532, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993567

ABSTRACT

This work reports experimental investigation and numerical validation of millimeter-sized Spherical Bragg Resonators (SBRs) fabricated using 3D printing technology. The frequency dependencies of the reflection and transmission coefficients were analyzed, and eigenfrequency values were calculated to examine the density of photonic states in air/PLA-polylactide SBRs, showing the appearance of an eigenmode and an increase in the local density of states in the core of a defect cavity. A decay rate enhancement of [Formula: see text] was obtained for a dipole placed in the core of the defect SBR. The study also investigated the influence of the source position on the resonator's electromagnetic wave energy. Scattering efficiencies up to order twelve of the multipole electric and magnetic contribution in a 10-layer SBR were calculated to validate the presence of the resonant modes observed in the scattering measurements performed for parallel and perpendicular polarizations. The results demonstrate that SBRs can act as omnidirectional cavities to enhance or inhibit spontaneous emission processes by modifying the density of electromagnetic states compared to free space. This finding highlights the potential of SBRs engineering spontaneous electromagnetic emission processes in various applications, including dielectric nanoantennas, optoelectronics devices, and quantum information across the entire electromagnetic spectrum.

4.
ACS Omega ; 8(36): 32340-32351, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37720752

ABSTRACT

Herein, we have characterized in depth the effect of femtosecond (fs)-laser writing on various polydimethylsiloxane (PDMS)-based composites. The study combines systematic and nanoscale characterizations for the PDMS blends that include various photoinitiators (organic and inorganic agents) before and after fs-laser writing. The results exhibit that the photoinitiators can dictate the mechanical properties of the PDMS, in which Young's modulus of PDMS composites has higher elasticity. The study illustrates a major improvement in refractive index change by 15 times higher in the case of PDMS/BP-Ge [benzophenone (BP) allytriethylgermane] and Irgacure 184. Additional enhancement was achieved in the optical performance levels of the PDMS composites (the PDMS composites of Irgacure 184/500, BP-Ge, and Ge-ATEG have a relative difference of less than 5% in comparison with pristine PDMS), which are on par with glasses. This insightful study can guide future investigators in choosing photoinitiators for particular applications in photonics and polymer chemistry.

5.
Sci Rep ; 13(1): 13717, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608059

ABSTRACT

In this work we demonstrate the integration of a spectrometer directly into smartphone screen by femtosecond laser inscription of a weak Raman-Nath volume grating either into the Corning Gorilla glass screen layer or in the tempered aluminosilicate glass protector screen placed in front of the phone camera. Outside the thermal accumulation regime, a new writing regime yielding positive refractive index change was found for both glasses which is fluence dependent. The upper-bound threshold for this thermal-accumulation-less writing regime was found for both glasses and were, respectively at a repetition rate less than 150 kHz and 101 kHz for fluence of 8.7 × 106 J/m2 and 1.4 × 107 J/m2. A weak volume Raman-Nath grating of dimension 0.5 by 3 mm and 3 µm pitch was placed in front of a Samsung Galaxy S21 FE cellphone to record the spectrum using the 2nd diffraction order. This spectrometer covers the visible band from 401 to 700 nm with a 0.4 nm/pixel detector resolution and 3 nm optical resolution. It was used to determine the concentration detection limit of Rhodamine 6G in water which was found to be 0.5 mg/L. This proof of concept paves the way to in-the-field absorption spectroscopy for quick information gathering.

6.
Sci Rep ; 13(1): 7892, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37193778

ABSTRACT

In the current article, we use a random supercontinuum based on a random Raman distributed feedback laser to investigate the generation of random numbers by spectrally demultiplexing the broad supercontinuum spectrum in parallel channels. By tuning the spectral separation between two independent channels, we test the most typically used statistical tests' abilities to identify the required minimum spectral separation between channels, especially after the use of post-processing steps. Out of all the tests that were investigated, the cross-correlation across channels using the raw data appears to be the most robust. We also demonstrate that the use of post-processing steps, either least significant bits extraction or exclusive-OR operations, hinders the ability of these tests to detect the existing correlations. As such, performing these tests on post-processed data, often reported in literature, is insufficient to properly establish the independence of two parallel channels. We therefore present a methodology, which may be used to confirm the true randomness of parallel random number generation schemes. Finally, we demonstrate that, while tuning a single channel's bandwidth can modify its potential randomness output, it also affects the number of available channels, such that the total random number generation bitrate is conserved.

7.
Sci Rep ; 13(1): 5436, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37012273

ABSTRACT

We demonstrate laser induced cooling in ytterbium doped silica (SiO2) glass with alumina, yttria co-doping (GAYY-Aluminum: Yttrium: Ytterbium Glass) fabricated using the modified chemical vapour deposition (MCVD) technique. A maximum temperature reduction by - 0.9 K from room temperature (296 K) at atmospheric pressure was achieved using only 6.5 W of 1029 nm laser radiation. The developed fabrication process allows us to incorporate ytterbium at concentration of 4 × 1026 ions/m3 which is the highest value reported for laser cooling without clustering or lifetime shortening, as well as to reach a very low background absorptive loss of 10 dB/km. The numerical simulation of temperature change versus pump power well agrees with the observation and predicts, for the same conditions, a temperature reduction of 4 K from room temperature in a vacuum. This novel silica glass has a high potential for a vast number of applications in laser cooling such as radiation-balanced amplifiers and high-power lasers including fiber lasers.

8.
Nat Commun ; 14(1): 1808, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37002203

ABSTRACT

Photonic-based implementation of advanced computing tasks is a potential alternative to mitigate the bandwidth limitations of electronics. Despite the inherent advantage of a large bandwidth, photonic systems are generally bulky and power-hungry. In this respect, all-pass spectral phase filters enable simultaneous ultrahigh speed operation and minimal power consumption for a wide range of signal processing functionalities. Yet, phase filters offering GHz to sub-GHz frequency resolution in practical, integrated platforms have remained elusive. We report a fibre Bragg grating-based phase filter with a record frequency resolution of 1 GHz, at least 10× improvement compared to a conventional optical waveshaper. The all-fibre phase filter is employed to experimentally realize high-speed fully passive NOT and XNOR logic operations. We demonstrate inversion of a 45-Gbps 127-bit random sequence with an energy consumption of ~34 fJ/bit, and XNOR logic at a bit rate of 10.25 Gbps consuming ~425 fJ/bit. The scalable implementation of phase filters provides a promising path towards widespread deployment of compact, low-energy-consuming signal processors.

9.
Sensors (Basel) ; 23(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36772434

ABSTRACT

High-performance erbium-doped DFB fiber lasers are presently required for several sensing applications, whilst the current efficiency record is only a few percent. Additionally, a flat-top intra-cavity power distribution that is not provided in traditional DFB lasers is preferred. Moreover, cavity lengths of <20 cm are attractive for fabrication and packaging. These goals can be achieved using highly erbium-doped fiber (i.e., 110 dB/m absorption at 1530 nm), providing high gain with proper engineering of coupling coefficients. In this paper, for a given background fiber loss, first the optimum intra-cavity signal powers for various pump powers are numerically calculated. Then, for a fully unidirectional laser, optimum coupling profiles are determined. Design diagrams, including contour maps for optimum cavity lengths, maximum output powers, maximum intra-cavity signal powers, and quality factors considering various pump powers and background fiber losses, are presented. The laser pump and intra-cavity signal distribution are also calculated for a realistic, feasible modified coupling profile considering a strong unidirectionality. The DFB laser is finally simulated using generalized coupled-mode equations for such modified profiles. The efficiency of more than 22% can be realized, which is the highest reported for DFB lasers based only on erbium-doped fiber.

10.
Opt Express ; 31(3): 3467-3478, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36785339

ABSTRACT

On-chip optical group-velocity dispersion (GVD) is highly desired for a wide range of signal processing applications, including low-latency and low-power-consumption dispersion compensation of telecommunication data signals. However, present technologies, such as linearly chirped waveguide Bragg gratings (LCWBGs), employ spectral phase accumulation along the frequency spectrum. To achieve the needed specifications in most applications, this strategy requires device lengths that are not compatible with on-chip integration while incurring in relatively long processing latencies. Here, we demonstrate a novel design strategy that utilizes a discretized and bounded spectral phase filtering process to emulate the continuous spectral phase variation of a target GVD line. This leads to a significant reduction of the resulting device length, enabling on-chip integration and ultra-low latencies. In experiments, we show GVD compensation of both NRZ and PAM4 data signals with baud rates up to 24 GBd over a 31.12-km fibre-optic link using a 4.1-mm WBG-based on-chip phase filter in a silicon-on-insulator (SOI) platform, at least 5× shorter compared to an equivalent LCWBG, reducing the processing latency down to ∼ 100 ps. The bandwidth of the mm-long device can be further extended to the THz range by employing a simple and highly efficient phase-only sampling of the grating profile. The proposed solution provides a promising route toward a true on-chip realization of a host of GVD-based all-optical analog signal processing functionalities.

11.
Opt Express ; 31(1): 396-410, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36606975

ABSTRACT

Intra-arterial catheter guidance is instrumental to the success of minimally invasive procedures, such as percutaneous transluminal angioplasty. However, traditional device tracking methods, such as electromagnetic or infrared sensors, exhibits drawbacks such as magnetic interference or line of sight requirements. In this work, shape sensing of bends of different curvatures and lengths is demonstrated both asynchronously and in real-time using optical frequency domain reflectometry (OFDR) with a polymer extruded optical fiber triplet with enhanced backscattering properties. Simulations on digital phantoms showed that reconstruction accuracy is of the order of the interrogator's spatial resolution (millimeters) with sensing lengths of less than 1 m and a high SNR.


Subject(s)
Cannula , Optical Fibers , Catheters, Indwelling , Phantoms, Imaging , Polymers
12.
IEEE Trans Biomed Eng ; 70(5): 1692-1703, 2023 05.
Article in English | MEDLINE | ID: mdl-36441884

ABSTRACT

OBJECTIVE: Minimally invasive revascularization procedures such as percutaneous transluminal angioplasty seek to treat occlusions in peripheral arteries. However their ability to treat long occlusions are hampered by difficulties to monitor the location of intravascular devices such as guidewires using fluoroscopy which requires continuous radiation, and lack the capacity to measure physiological characteristics such as laminar blood flow close to occlusions. Fiber optic technologies provide means of tracking by measuring fibers under strain, however they are limited to known geometrical models and are not used to measure external variations. METHODS: We present a navigation framework based on optical frequency domain reflectometry (OFDR) using fully-distributed optical sensor gratings enhanced with ultraviolet exposure to track the three-dimensional shape and surrounding blood flow of intra-vascular guidewires. To process the strain information provided by the continuous gratings, a dual-branch model learning spatio-temporal features allows to predict the output measures based on scattered wavelength distributions. The first network determines the 3D shape appearance of the guidewire using the input backscattered wavelength shift data in combination with prior segmentations, while a second network (graph temporal convolution network) produces estimates of vascular flow velocities using ground-truth 4D-flow MRI acquisitions. RESULTS: Experiments performed on synthetic and animal models, as well as in a preliminary human trial shows the capability of the model to generate accurate 3D shape tracking and blood flow velocities differences below 2 cm/s, thus providing realistic physiologic and anatomical properties for intravascular techniques. CONCLUSION AND SIGNIFICANCE: The study demonstrates the feasibility of using the device clinically, and could be integrated within revascularization workflows for treating occlusions in arteries, since the navigation framework involves minimal manual intervention.


Subject(s)
Endovascular Procedures , Optical Fibers , Animals , Humans , Arteries , Fiber Optic Technology , Blood Flow Velocity
13.
Opt Express ; 30(26): 47720-47732, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558693

ABSTRACT

This work considers a perfect 3D omnidirectional photonic crystal; Spherical Bragg Resonators (SBR), for lasing applications. We use the recursive transfer matrix method to study scattering in an Er3+ doped SBR. We find the threshold gain factor for lasing by scanning poles and zeros of the S-matrix in the complex frequency plane. For a six Si/SiO2 bilayer SBR, the threshold gain factor corresponds to a dopant density of Er3+ of 5.63 × 1020ions/cm3. We believe, our work is the first theoretical demonstration of the ability to engineer optical amplification and threshold gain for lasing in SBRs.

14.
Opt Express ; 30(17): 30405-30419, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242145

ABSTRACT

Femtosecond laser direct-writing is an attractive technique to fabricate fiber Bragg gratings and to achieve through-the-coating inscription. In this article, we report the direct inscription of high-quality first-order gratings in optical fiber, without the use of an index-matching medium. A new alignment technique based on the inscription of weak probe gratings is used to track the relative position between the focal spot and fiber core. A simple and flexible method to precisely control the position of each grating plane is also presented. With this method, periodic phase modulation of grating structures is achieved and used to inscribe arbitrary apodization and phase profiles. It is shown that a burst of multiple laser pulses used to inscribe each grating plane leads to a significant increase in the grating strength, while maintaining low insertion loss, critical for many applications.

15.
Sci Rep ; 12(1): 1623, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35102176

ABSTRACT

This study aims at identifying compounds incorporated into Polydimethylsiloxane (PDMS) which produce large refractive index change under fs laser exposition, potentially leading to optimal writing of waveguides or photonic devices in such a soft host. Germanium derivative, titania and zirconite derivatives, benzophenone (Bp), irgacure-184/500/1173 and 2959 are investigated. We show a mapping of the RI index change relative to the writing speed (1 to 40 mm/s), the repetition rate (606 to 101 kHz) and the number of passes (1 to 8) from which we establish quantitative parameters to allow the comparison between samples. We show that the organic materials, especially irgacure-184 and benzophenone yield a significantly higher maximum refractive index change in the order of 10-2. We also show that the strongest photosensitivity is achieved with a mixture of organic/organo-metallic material of Bp + Ge. We report a synergetic effect on photosensitivity of this novel mixture.

16.
Sci Rep ; 11(1): 16803, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34413334

ABSTRACT

We report the structural and optical properties of Nd:YAB (NdxY1-x Al3(BO3)4)-nanoparticle-doped PDMS elastomer films for random lasing (RL) applications. Nanoparticles with Nd ratios of x = 0.2, 0.4, 0.6, 0.8, and 1.0 were prepared and then incorporated into the PDMS elastomer to control the optical gain density and scattering center content over a wide range. The morphology and thermal stability of the elastomer composites were studied. A systematic investigation of the lasing wavelength, threshold, and linewidth of the laser was carried out by tailoring the concentration and optical gain of the scattering centers. The minimum threshold and linewidth were found to be 0.13 mJ and 0.8 nm for x = 1 and 0.8. Furthermore, we demonstrated that the RL intensity was easily tuned by controlling the degree of mechanical stretching, with strain reaching up to 300%. A strong, repeatable lasing spectrum over ~ 50 cycles of applied strain was observed, which demonstrates the high reproducibility and robustness of the RL. In consideration for biomedical applications that require long-term RL stability, we studied the intensity fluctuation of the RL emission, and confirmed that it followed Lévy-like statistics. Our work highlights the importance of using rare-earth doped nanoparticles with polymers for RL applications.

17.
Sci Rep ; 11(1): 13182, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34162986

ABSTRACT

A simple novel method for random number generation is presented, based on a random Raman fiber laser. This laser is built in a half-open cavity scheme, closed on one side by a narrow-linewidth 100 mm fiber Bragg grating. The interaction between the randomly excited lasing modes of this laser, in addition to nonlinear effects such as modulation instability, allow the generation of random bits at rates of up to 540 Gbps with minimal post processing. Evaluation of the resulting bit streams' randomness by the NIST statistical test suite highlights the importance of evaluating the physical entropy content, as bit sequences generated by this random laser pass all the statistical tests with a significance level of 0.01, despite being generated at more than twice the theoretical entropy generation speed.

18.
Article in English | MEDLINE | ID: mdl-34422444

ABSTRACT

Flexible medical instruments, such as Continuum Dexterous Manipulators (CDM), constitute an important class of tools for minimally invasive surgery. Accurate CDM shape reconstruction during surgery is of great importance, yet a challenging task. Fiber Bragg grating (FBG) sensors have demonstrated great potential in shape sensing and consequently tip position estimation of CDMs. However, due to the limited number of sensing locations, these sensors can only accurately recover basic shapes, and become unreliable in the presence of obstacles or many inflection points such as s-bends. Optical Frequency Domain Reflectometry (OFDR), on the other hand, can achieve much higher spatial resolution, and can therefore accurately reconstruct more complex shapes. Additionally, Random Optical Gratings by Ultraviolet laser Exposure (ROGUEs) can be written in the fibers to increase signal to noise ratio of the sensors. In this comparison study, the tip position error is used as a metric to compare both FBG and OFDR shape reconstructions for a 35 mm long CDM developed for orthopedic surgeries, using a pair of stereo cameras as ground truth. Three sets of experiments were conducted to measure the accuracy of each technique in various surgical scenarios. The tip position error for the OFDR (and FBG) technique was found to be 0.32 (0.83) mm in free-bending environment, 0.41 (0.80) mm when interacting with obstacles, and 0.45 (2.27) mm in s-bending. Moreover, the maximum tip position error remains sub-millimeter for the OFDR reconstruction, while it reaches 3.40 mm for FBG reconstruction. These results propose a cost-effective, robust and more accurate alternative to FBG sensors for reconstructing complex CDM shapes.

19.
Opt Express ; 27(26): 37508-37515, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878529

ABSTRACT

We present theoretical investigations including simulations and statistical analyses on the fluctuations of the temporal output power in a Brillouin erbium-doped fiber laser. The generation of even Stokes waves up to the 5th order is considered by solving coupled-mode equations including SBS and Kerr nonlinearities. It is demonstrated that by increasing the EDFA pump power and generating a few orders of Stokes waves in such a laser, there are strong power fluctuations and rogue events are expected. Transition from Gaussian-like to levy-like regime is described as the power is increased from threshold resulting in the initial Stokes wave generation to well beyond threshold generating 5 effective even Stokes waves. Accordingly, phase portraits confirm increasing fluctuations as a function of the power. It is also shown that at the SBS lasing threshold, the output signals have the maximum correlation over replicas in round trips, nevertheless by enhancing the power, the correlation diminishes, which results in a full symmetry breaking and the system radiates in a chaotic manner and exhibits random laser behavior.

20.
Opt Express ; 27(10): 13895-13909, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31163847

ABSTRACT

We propose a novel device defined as Random Optical Grating by Ultraviolet or ultrafast laser Exposure (ROGUE), a new type of fiber Bragg grating (FBG), exhibiting a weak reflection over a large bandwidth, which is independent of the length of the grating. This FBG is fabricated simply by dithering the phase randomly during the writing process. This grating has an enhanced backscatter, several orders of magnitude above typical Rayleigh backscatter of standard SMF-28 optical fiber. The grating is used in distributed sensing using optical frequency domain reflectometry (OFDR), allowing a significant increase in signal to noise ratio for strain and temperature measurement. This enhancement results in significantly lower strain or temperature noise level and accuracy error, without sacrificing the spatial resolution. Using this method, we show a sensor with a backscatter level 50 dB higher than standard unexposed SMF-28, which can thus compensate for increased loss in the system.

SELECTION OF CITATIONS
SEARCH DETAIL
...