Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Imaging ; 80: 98-105, 2021 07.
Article in English | MEDLINE | ID: mdl-33945858

ABSTRACT

PURPOSE: The development of ultrashort echo time (UTE) MRI sequences has led to improved imaging of tissues with short T2 relaxation times, such as the deep layer cartilage and meniscus. UTE combined with adiabatic T1ρ preparation (UTE-Adiab-T1ρ) is an MRI measure with low sensitivity to the magic angle effect. This study aimed to investigate the sensitivity of UTE-Adiab-T1ρ to mechanical load-induced deformations in the tibiofemoral cartilage and meniscus of human cadaveric knee joints. METHODS: Eight knee joints from young (42 ± 12 years at death) donors were evaluated on a 3 T scanner using the UTE-Adiab-T1ρ sequence under four sequential loading conditions: load = 0 N (Load0), load = 300 N (Load1), load = 500 N (Load2), and load = 0 N (Unload). UTE-Adiab-T1ρ was measured in the meniscus (M), femoral articular cartilage (FAC), tibial articular cartilage (TAC), articular cartilage regions uncovered by meniscus (AC-UC), and articular cartilage regions covered by meniscus (AC-MC) within region of interests (ROIs) manually selected by an experienced MR scientist. The Kruskal-Wallis test, with corrected significance level for multiple comparisons, was used to examine the UTE-Adiab-T1ρ differences between different loading conditions. RESULTS: UTE-Adiab-T1ρ decreased in all grouped ROIs under both Load1 and Load2 conditions (-18.7% and - 16.9% for M, -18.8% and - 12.6% for FAC, -21.4% and - 10.7% for TAC, -26.2% and - 13.9% for AC-UC, and - 16.9% and - 10.7% for AC-MC). After unloading, average UTE-Adiab-T1ρ increased across all ROIs and within a lower range compared with the average UTE-Adiab-T1ρ decreases induced by the two previous loading conditions. The loading-induced differences were statistically non-significant. CONCLUSIONS: While UTE-Adiab-T1ρ reduction by loading is likely an indication of tissue deformation, the increase of UTE-Adiab-T1ρ within a lower range by unloading implies partial tissue restoration. This study highlights the UTE-Adiab-T1ρ technique as an imaging marker of tissue function for detecting deformation patterns under loading.


Subject(s)
Cartilage, Articular , Knee Joint , Cadaver , Cartilage, Articular/diagnostic imaging , Humans , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging , Tibia
2.
Cartilage ; 13(1_suppl): 665S-673S, 2021 12.
Article in English | MEDLINE | ID: mdl-33289401

ABSTRACT

OBJECTIVE: Ultrashort echo time (UTE) magnetic resonance imaging (MRI) sequences have improved imaging of short T2 musculoskeletal (MSK) tissues. UTE-MRI combined with magnetization transfer modeling (UTE-MT) has demonstrated robust assessment of MSK tissues. This study aimed to investigate the variation of UTE-MT measures under mechanical loading in tibiofemoral cartilage and meniscus of cadaveric knee joints. DESIGN: Fourteen knee joints from young (n = 8, 42 ± 12 years old) and elderly (n = 6, 89 ± 4 years old) donors were scanned on a 3-T scanner under 3 loading conditions: load = 300 N (Load1), load = 500 N (Load2), and load = 0 N (Unload). UTE-MT sequences were performed at each loading condition. Macromolecular proton fraction (MMF) was calculated from UTE-MT modeling. Wilcoxon rank sum test was used to examine the MRI data differences between loading conditions. RESULTS: For young donors, MMF increased in all grouped regions of interest (meniscus [M], femoral articular cartilage [FAC], tibial articular cartilage [TAC], articular cartilage regions covered by meniscus [AC-MC], and articular cartilage regions uncovered by meniscus [AC-UC]) when the load increased from 300 to 500 N. The increases in MMF were significant for M (13.3%, P < 0.01) and AC-MC (9.2%, P = 0.04). MMF decreased in all studied regions after unloading, which was significant only for AC-MC (-8.9%, P = 0.01). For elderly donors, MRI parameters did not show significant changes by loading or unloading. CONCLUSION: This study highlights the potential of the UTE-MT modeling combined with knee loading in differentiating between normal and abnormal knees. Average tissue deformation effects were likely higher and more uniformly distributed in the joints of young donors compared with elderly donors.


Subject(s)
Cartilage, Articular , Meniscus , Adult , Aged , Aged, 80 and over , Cartilage, Articular/diagnostic imaging , Feasibility Studies , Humans , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging/methods , Middle Aged
3.
Magn Reson Med ; 84(5): 2551-2560, 2020 11.
Article in English | MEDLINE | ID: mdl-32419199

ABSTRACT

PURPOSE: To investigate the magic angle effect in three-dimensional ultrashort echo time Cones Adiabatic T1ρ (3D UTE Cones-AdiabT1ρ ) imaging of articular cartilage at 3T. METHODS: The magic angle effect was investigated by repeated 3D UTE Cones-AdiabT1ρ imaging of eight human patellar samples at five angular orientations ranging from 0° to 90° relative to the B0 field. Cones continuous wave T1ρ (Cones-CW-T1ρ ) and Cones- T2∗ sequences were also applied for comparison. Cones-AdiabT1ρ , Cones-CW-T1ρ and Cones- T2∗ values were measured for four regions of interest (ROIs) (10% superficial layer, 60% transitional layer, 30% radial layer, and a global ROI) for each sample at each orientation to evaluate their angular dependence. RESULTS: 3D UTE Cones-AdiabT1ρ values increased from the radial layer to the superficial layer for all angular orientations. The superficial layer showed the least angular dependence (around 4.4%), while the radial layer showed the strongest angular dependence (around 34.4%). Cones-AdiabT1ρ values showed much reduced magic angle effect compared to Cones-CW-T1ρ and Cones- T2∗ values for all four ROIs. On average over eight patellae, Cones-AdiabT1ρ values increased by 27.2% (4.4% for superficial, 23.8% for transitional, and 34.4% for radial layers), Cones-CW-T1ρ values increased by 76.9% (11.3% for superficial, 59.1% for transitional, and 117.8% for radial layers), and Cones- T2∗ values increased by 237.5% (87.9% for superficial, 262.9% for transitional, and 327.3% for radial layers) near the magic angle. CONCLUSIONS: The 3D UTE Cones-AdiabT1ρ sequence is less sensitive to the magic angle effect in the evaluation of articular cartilage compared to Cones- T2∗ and Cones-CW-T1ρ .


Subject(s)
Cartilage, Articular , Cartilage, Articular/diagnostic imaging , Diagnostic Tests, Routine , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Patella
SELECTION OF CITATIONS
SEARCH DETAIL
...