Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37367806

ABSTRACT

The utilization of membranes has been extensively employed in the treatment of water and wastewater. Membrane fouling, attributed to the hydrophobic nature of membranes, constitutes a noteworthy concern in the realm of membrane separation. The mitigation of fouling can be achieved through the modification of membrane characteristics, including but not limited to hydrophilicity, morphology, and selectivity. In this study, a nanohybrid polysulfone (PSf) membrane embedded with silver-graphene oxide (Ag-GO) was fabricated to overcome problems related to biofouling. The embedment of Ag-GO nanoparticles (NPs) is the aim towards producing membranes with antimicrobial properties. The fabricated membranes at different compositions of NPs (0 wt%, 0.3 wt%, 0.5 wt%, and 0.8 wt%) are denoted as M0, M1, M2, and M3, respectively. These PSf/Ag-GO membranes were characterized using FTIR, water contact angle (WCA) goniometer, FESEM, and salt rejection. The additions of GO significantly improved the hydrophilicity of PSf membranes. An additional OH peak at 3380.84 cm-1 of the nanohybrid membrane from FTIR spectra may be related to hydroxyl (-OH) groups of GO. The WCA of the fabricated membranes decreased from 69.92° to 54.71°, which confirmed the improvement in its hydrophilicity. In comparison to the pure PSf membrane, the morphology of the finger-like structure of the fabricated nanohybrid membrane slightly bent with a larger bottom part. Among the fabricated membranes, M2 achieved the highest iron (Fe) removal, up to 93%. This finding proved that the addition of 0.5 wt% Ag-GO NPs enhanced the membrane water permeability together with its performance of ionic solute removal (Fe2+) from synthetic groundwater. In conclusion, embedding a small amount of Ag-GO NPs successfully improved the hydrophilicity of PSf membranes and was able to achieve high removal of Fe at 10-100 mg L-1 towards purification of groundwater for safe drinking water.

2.
Nanomaterials (Basel) ; 12(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35159781

ABSTRACT

The toxicity of heavy metals can cause water pollution and has harmful effects on human health and the environment. Various methods are used to overcome this pressing issue and each method has its own advantages and disadvantages. Membrane filtration technology such as nanofiltration (NF) produces high quality water and has a very small footprint, which results in lower energy usage. Nanofiltration is a membrane-based separation technique based on the reverse osmosis separation process developed in the 1980s. NF membranes have a pore size of 1 nm and molecular weight cut off (MWCO) of 300 to 500 Da. The properties of NF membranes are unique since the surface charge of the membranes is dependent on the functional groups of the membrane. The rejection mechanism of NF membrane is unique as it is a combination of various rejection mechanisms such as steric hindrance, electric exclusion, dielectric effect, and hydration mechanism. However, these mechanisms have not been studied in-depth due to their complexity. There are also many factors contributing to the rejection of NF membrane. Many junior researchers would face difficulty in studying NF membrane. Therefore, this paper is designed for researchers new to the field, and will briefly review the rejection mechanisms of NF membrane by both sieving and non-sieving separation processes. This mini-review aims to provide new researchers with a general understanding of the concept of the separation process of charged membranes.

3.
Biomimetics (Basel) ; 6(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429852

ABSTRACT

A novel model is developed to evaluate the van der Waals (vdW) interactions between a capsule shaped bacterium (P. putida) and flat minerals plates in different approach profiles: Vertically and horizontally. A comparison of the approaches to the well-developed spherical particle to mineral surface (semi-infinite wall and spherical) approach has been made in this investigation. The van der Waals (vdW) interaction potentials for a capsule-shaped bacterium are found using Hamaker's microscopic approach of sphere to plate and cylinder to plate either vertically or horizontally to the flat surface. The numerical results show that a horizontal orientated capsule shaped bacterium to mineral surface interaction was more attractive compared to a capsule shaped bacterium approaching vertically. The orientation of the bacterial approaching a surface as well as the type and topology of the mineral influence the adhesion of a bacteria to that surface. Furthermore, the density difference among each type of bacteria shape (capsule, cylinder, and sphere) require different amounts of energy to adhere to hematite and quartz surfaces.

4.
RSC Adv ; 11(13): 7347-7368, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-35423275

ABSTRACT

Chemical contaminants such as heavy metals, dyes, and organic oils seriously affect the environment and threaten human health. About 2 million tons of waste is released every day into the water system. Heavy metals are the largest contributor which cover about 31% of the total composition of water contaminants. Every day, approximately 14 000 people die due to environmental exposure to selected chemicals. Removal of these contaminants down to safe levels is expensive, high energy and unsustainable by current approaches such as oxidation, biodegradation, photocatalysis, precipitation, reverse osmosis and adsorption. A combination of biosorption and nanotechnology offers a new way to remediate these chemical contaminants. Nanostructured materials are proven to have higher adsorption capacities than the same material in its larger-scale form. Nanocellulose is very promising as a high-performance bioadsorbent due to its interesting characteristics of high adsorption capacity, high mechanical strength, hydrophilic surface chemistry, renewability and biodegradability. It has been proven to have higher adsorption capacity and better binding affinity than other similar materials at the macroscale. The high specific surface area and abundance of hydroxyl groups within lead to the possible functionalization of this material for decontamination purposes. Several research papers have shown the effectiveness of nanocellulose in the remediation of chemical contaminants. This review aims to provide an overview of the most recent developments regarding nanocellulose as an adsorbent for chemical contamination remediation. Recent advancements regarding the modification of nanocellulose to enhance its adsorption efficiency towards heavy metals, dyes and organic oils were highlighted. Moreover, the desorption capability and environmental issue related to every developed nanocellulose-based adsorbent were also tackled.

SELECTION OF CITATIONS
SEARCH DETAIL
...