Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 12: 102524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38192359

ABSTRACT

Global climate change and sea level rise are increasing the risks of flooding for coastal communities. Probabilistic coastal flood risk analysis at regional or global scales requires flood models with relatively low data requirements and low computational costs. Bathtub inundation models, which compute flood depth as the difference between water level and ground elevation, are well-suited for large-scale flood risk analysis. However, these models may overestimate floods because they do not capture some of the relevant underlying hydrodynamic processes that govern flood propagation on land. We present Flow-Tub, a modified bathtub inundation model that integrates two hydrodynamic processes to improve the accuracy of the bathtub inundation model while retaining computational efficiency: hydraulic connectivity and path-based attenuation.1.Hydraulic connectivity ensures that inundation is restricted to areas connected to the water source.2.Path-based attenuation ensures that the modeled flood water depths are reduced along the flow paths to represent the effects of surface friction and the temporary nature of storm surges. We validate the Flow-tub model against a hydrodynamic model. We also compare results of the bathtub model and the Flow-Tub model, highlighting the improved accuracy in the estimation of flood depths in the latter.

2.
MethodsX ; 8: 101483, 2021.
Article in English | MEDLINE | ID: mdl-34434881

ABSTRACT

Sea level rise and coastal floods are disrupting coastal communities across the world. The impacts of coastal floods are magnified by the disruption of critical urban systems such as transportation. The flood-related closure of low-lying coastal roads and highways can increase travel time delays and accident risk. However, quantifying the flood-related disruption of the urban traffic system presents challenges. Traffic systems are complex and highly dynamic, where congestion resulting from road closures may propagate rapidly from one area to another. Prior studies identify flood-related road closures by spatially overlaying coastal flood maps onto road network models, but simplifications within the representation of the road network with respect to the coastline or creeks may lead to an incorrect identification of flooded roads. We identify three corrections to reduce potential biases in the identification of flooded roads: 1. We correct for the geometry of highways; 2. We correct for the elevation of bridges and highway overpasses; and 3. We identify and account for road-creek crossings. Accounting for these three corrections, we develop a methodology for accurately identifying flooded roads, improving our ability to quantify flood impacts on urban traffic systems and accident rates.

3.
Sci Adv ; 6(32): eaba2423, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32821823

ABSTRACT

As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, interannual anomalies driven by large-scale climate variability such as the El Niño Southern Oscillation, and sea level rise. When identifying inundated roads, we propose corrections for potential biases arising from model integration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show that metric reach, a measure of road network density, is a better proxy for delays than flood exposure.

4.
Proc Math Phys Eng Sci ; 475(2228): 20190259, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31534428

ABSTRACT

The distribution and drainage of meltwater at the base of glaciers sensitively affects fast ice flow. Previous studies suggest that thin meltwater films between the overlying ice and a hard-rock bed channelize into efficient drainage elements by melting the overlying ice. However, these studies do not account for the presence of soft deformable sediment observed underneath many West Antarctic ice streams, and the inextricable coupling that sediment exhibits with meltwater drainage. Our work presents an alternate mechanism for initiating drainage elements such as canals where meltwater films grow by eroding the sediment beneath. We conduct a linearized stability analysis on a meltwater film flowing over an erodible bed. We solve the Orr-Sommerfeld equation for the film flow, and we compute bed evolution with the Exner equation. We identify a regime where the coupled dynamics of hydrology and sediment transport drives a morphological instability that generates spatial heterogeneity at the bed. We show that this film instability operates at much faster time scales than the classical thermal instability proposed by Walder. We discuss the physics of the instability using the framework of ripple formation on erodible beds.

SELECTION OF CITATIONS
SEARCH DETAIL
...