Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(3): e10856, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38487748

ABSTRACT

Nonnative species are a key agent of global change. However, nonnative invertebrates remain understudied at the community scales where they are most likely to drive local extirpations. We use the North American NEON pitfall trapping network to document the number of nonnative species from 51 invertebrate communities, testing four classes of drivers. We sequenced samples using the eDNA from the sample's storage ethanol. We used AICc informed regression to evaluate how native species richness, productivity, habitat, temperature, and human population density and vehicular traffic account for continent-wide variation in the number of nonnative species in a local community. The percentage of nonnatives varied 3-fold among habitat types and over 10-fold (0%-14%) overall. We found evidence for two types of constraints on nonnative diversity. Consistent with Capacity rules (i.e., how the number of niches and individuals reflect the number of species an ecosystem can support) nonnatives increased with existing native species richness and ecosystem productivity. Consistent with Establishment Rules (i.e., how the dispersal rate of nonnative propagules and the number of open sites limits nonnative species richness) nonnatives increased with automobile traffic-a measure of human-generated propagule pressure-and were twice as common in pastures than native grasslands. After accounting for drivers associated with a community's ability to support native species (native species richness and productivity), nonnatives are more common in communities that are regularly seasonally disturbed (pastures and, potentially deciduous forests) and those experiencing more vehicular traffic. These baseline values across the US North America will allow NEON's monitoring mission to document how anthropogenic change-from disturbance to propagule transport, from temperature to trends in local extinction-further shape biotic homogenization.

2.
Ecology ; 104(1): e3856, 2023 01.
Article in English | MEDLINE | ID: mdl-36053835

ABSTRACT

The electrolytes Na and K both function to maintain water balance and membrane potential. However, these elements work differently in plants-where K is the primary electrolyte-than in animals-where ATPases require a balanced supply of Na and K. Here, we use monthly factorial additions of Na and K to simulate bovine urine inputs and explore how these electrolytes ramify through a prairie food web. Against a seasonal trend of increasing grass biomass and decreasing water and elemental tissue concentrations, +K and +Na plots boosted water content and, when added together, plant biomass. Compared to control plots, +Na and +K plots increased element concentrations in above-ground plant tissue early in summer and decreased them in September. Simultaneously, invertebrate abundance on Na and K additions were sequentially higher and lower than control plots from June to September and were most suppressed when grass was most nutrient rich. K was the more effective plant electrolyte, but Na frequently promoted similar changes in grass ionomes. The soluble/leachable ions of Na and K showed significant ability to shape plant growth, water content, and the 15-element ionome, with consequences for higher trophic levels. Grasslands with high inputs of Na and K-via large mammal grazers or coastal aerosol deposition-likely enhance the ability of plants to adjust their above-ground ionomes, with dramatic consequences for the distribution of invertebrate consumers.


Subject(s)
Food Chain , Grassland , Animals , Cattle , Sodium , Electrolytes , Invertebrates , Ions , Plants , Poaceae , Water , Mammals
3.
Ecology ; 104(1): e3855, 2023 01.
Article in English | MEDLINE | ID: mdl-36054605

ABSTRACT

Activity density (AD), the rate at which animals collectively move through their environment, emerges as the product of a taxon's local abundance and its velocity. We analyze drivers of seasonal AD using 47 localities from the National Ecological Observatory Network (NEON) both to better understand variation in ecosystem rates like pollination and seed dispersal as well as the constraints of using AD to monitor invertebrate populations. AD was measured as volume from biweekly pitfall trap arrays (ml trap-1 14 days-1 ). Pooled samples from 2017 to 2018 revealed AD extrema at most temperatures but with a strongly positive overall slope. However, habitat types varied widely in AD's seasonal temperature sensitivity, from negative in wetlands to positive in mixed forest, grassland, and shrub habitats. The temperature of maximum AD varied threefold across the 47 localities; it tracked the threefold geographic variation in maximum growing season temperature with a consistent gap of ca. 3°C across habitats, a novel macroecological result. AD holds potential as an effective proxy for investigating ecosystem rates driven by activity. However, our results suggest that its use for monitoring insect abundance is complicated by the many ways that both abundance and velocity are constrained by a locality's temperature and plant physiognomy.


Subject(s)
Ecosystem , Forests , Animals , Temperature , Seasons , Wetlands
4.
Biol Lett ; 18(4): 20210518, 2022 04.
Article in English | MEDLINE | ID: mdl-35382584

ABSTRACT

Climate change is one of the primary agents of the global decline in insect abundance. Because of their narrow thermal ranges, tropical ectotherms are predicted to be most threatened by global warming, yet tests of this prediction are often confounded by other anthropogenic disturbances. We used a tropical forest soil warming experiment to directly test the effect of temperature increase on litter-dwelling ants. Two years of continuous warming led to a change in ant community between warming and control plots. Specifically, six ant genera were recorded only on warming plots, and one genus only on control plots. Wasmannia auropuctata, a species often invasive elsewhere but native to this forest, was more abundant in warmed plots. Ant recruitment at baits was best predicted by soil surface temperature and ant heat tolerance. These results suggest that heat tolerance is useful for predicting changes in daily foraging activity, which is directly tied to colony fitness. We show that a 2-year increase in temperature (of 2-4°C) can have a profound effect on the most abundant insects, potentially favouring species with invasive traits and moderate heat tolerances.


Subject(s)
Ants , Thermotolerance , Animals , Ants/physiology , Climate Change , Global Warming , Soil
5.
Biol Lett ; 18(3): 20220016, 2022 03.
Article in English | MEDLINE | ID: mdl-35232272

ABSTRACT

Plants have evolved a variety of approaches to attract pollinators, including enriching their nectar with essential nutrients. Because sodium is an essential nutrient for pollinators, and sodium concentration in nectar can vary both within and among species, we explored whether experimentally enriching floral nectar with sodium in five plant species would influence pollinator visitation and diversity. We found that the number of visits by pollinators increased on plants with sodium-enriched nectar, regardless of plant species, relative to plants receiving control nectar. Similarly, the number of species visiting plants with sodium-enriched nectar was twice that of controls. Our findings suggest that sodium in floral nectar may play an important but unappreciated role in the ecology and evolution of plant-pollinator mutualisms.


Subject(s)
Plant Nectar , Pollination , Ecology , Flowers , Plants , Sodium
6.
Biol Lett ; 18(1): 20210510, 2022 01.
Article in English | MEDLINE | ID: mdl-35078328

ABSTRACT

Invertebrate growth rates have been changing in the Anthropocene. We examine rates of seasonal maturation in a grasshopper community that has been declining annually greater than 2% a year over 34 years. As this grassland has experienced a 1°C increase in temperature, higher plant biomass and lower nutrient densities, the community is maturing more slowly. Community maturation had a nutritional component: declining in years/watersheds with lower plant nitrogen. The effects of fire frequency were consistent with effects of plant nitrogen. Principal components analysis also suggests associated changes in species composition-declines in the densities of grass feeders were associated with declines in community maturation rates. We conclude that slowed maturation rates-a trend counteracted by frequent burning-likely contribute to long-term decline of this dominant herbivore.


Subject(s)
Grasshoppers , Poaceae , Animals , Ecosystem , Grassland , Nitrogen , North America , Plants
7.
Ecology ; 103(1): e03542, 2022 01.
Article in English | MEDLINE | ID: mdl-34614206

ABSTRACT

Activity density (AD), the rate that an individual taxon or its biomass moves through the environment, is used both to monitor communities and quantify the potential for ecosystem work. The Abundance Velocity Hypothesis posited that AD increases with aboveground net primary productivity (ANPP) and is a unimodal function of temperature. Here we show that, at continental extents, increasing ANPP may have nonlinear effects on AD: increasing abundance, but decreasing velocity as accumulating vegetation interferes with movement. We use 5 yr of data from the NEON invertebrate pitfall trap arrays including 43 locations and four habitat types for a total of 77 habitat-site combinations to evaluate continental drivers of invertebrate AD. ANPP and temperature accounted for one-third to 92% of variation in AD. As predicted, AD was a unimodal function of temperature in forests and grasslands but increased linearly in open scrublands. ANPP yielded further nonlinear effects, generating unimodal AD curves in wetlands, and bimodal curves in forests. While all four habitats showed no AD trends over 5 yr of sampling, these nonlinearities suggest that trends in AD, often used to infer changes in insect abundance, will vary qualitatively across ecoregions.


Subject(s)
Ecosystem , Soil , Animals , Biomass , Grassland , Invertebrates
8.
Ecology ; 103(2): e03601, 2022 02.
Article in English | MEDLINE | ID: mdl-34820828

ABSTRACT

Ecologists search for rules by which traits dictate the abundance and distribution of species. Here we search for rules that apply across three common taxa of litter invertebrates in six North American forests from Panama to Oregon. We use image analysis to quantify the abundance and body size distributions of mites, springtails, and spiders in 21 1-m2 plots per forest. We contrast three hypotheses: two of which focus on trait-abundance relationships and a third linking abundance to species richness. Despite three orders of magnitude variation in size, the predicted negative relationship between mean body size and abundance per area occurred in only 18% of cases, never for large bodied taxa like spiders. We likewise found only 18% of tests supported our prediction that increasing litter depth allows for high abundance; two-thirds of which occurred at a single deciduous forest in Massachusetts. In contrast, invertebrate abundance constrained species richness 76% of the time. Our results suggest that body size and habitat volume in brown food webs are rarely good predictors of variation in abundance, but that variation in diversity is generally well predicted by abundance.


Subject(s)
Forests , Invertebrates , Animals , Biodiversity , Body Size , Ecosystem , Food Chain
9.
Case Rep Gastrointest Med ; 2021: 9918830, 2021.
Article in English | MEDLINE | ID: mdl-34258084

ABSTRACT

A 78-year-old man with a history of pancolitis, after the treatment of dental abscess with oral antibiotics and local application of camphorated and mentholated chlorophenol (CMCP), presented with abdominal pain of 4-day duration, as well as hair loss in the area of moustache and finger nail lifting. He was already treated with rectal application of budesonide because of pancolitis, diagnosed 6 weeks ago and interpreted as an allergic reaction to clindamycin. For further investigation, we performed gastroscopy and colonoscopy, which showed the edematous mucosa with polypus-like changes of the whole mucosa of the stomach, duodenum, first part of the jejunum, distal ileum, complete colon, and rectum. The diagnosis was complicated and was achieved in synopsis with anamnestic details, such as endodontic application of camphorated chlorophenol. The patient symptoms abated after he commenced on mesalazine therapy.

10.
Ecology ; 102(9): e03453, 2021 09.
Article in English | MEDLINE | ID: mdl-34165805

ABSTRACT

The impacts of altered biogeochemical cycles on ecological systems are likely to vary with trophic level. Predicting how these changes will affect ecological food webs is further complicated by human activities, which are simultaneously altering the availability of macronutrients like nitrogen (N) and phosphorus (P), and micronutrients such as sodium (Na). Here we contrast three hypotheses that predict how increasing nutrient availability will shape grassland food webs. We conducted a distributed factorial fertilization experiment (N and P crossed with NaCl) across four North American grasslands, quantifying the responses of aboveground plant biomass and volume, plant tissue and soil elemental concentrations, as well as the abundance of five arthropod functional groups. Fertilization with N and P increased plant biomass and foliar N and P concentrations in grasses but not forbs. Fertilization with Na had no effect on plant biomass but increased foliar Na concentrations. Consistent with the nutrient limitation hypothesis, we found strong evidence of nutrient limitation for insect herbivores across the four sites with sucking (phloem and xylem feeding) herbivores increasing in abundance with NP fertilization and chewing herbivores increasing in response to both Na and NP fertilization, and a trend for increased response of arthropods to lower plant nutrient availability. We found no evidence for an interaction of NaCl and NP on arthropod abundance as predicted by the serial colimitation hypothesis. Finally, consistent with the ecosystem size hypothesis, predator and parasitoid abundances increased with plant volume, but not fertilization. Our results suggest these functional group-specific responses to changes in plant nutrients and structure are key to predicting the future of grassland food webs in an era with increasing use of N and P fertilizers, and increasing terrestrial inputs of Na from road salt, saline irrigation water, and aerosols due to rising sea levels.


Subject(s)
Food Chain , Herbivory , Ecosystem , Food Quality , Grassland
11.
Ecology ; 102(10): e03459, 2021 10.
Article in English | MEDLINE | ID: mdl-34171182

ABSTRACT

Plant elemental content can vary up to 1,000-fold across grasslands, with implications for the herbivores the plants feed. We contrast the regulation, in grasses and forbs, of 12 elements essential to plants and animals (henceforth plant-essential), 7 essential to animals but not plants (animal-essential) and 6 with no known metabolic function (nonessential). Four hypotheses accounted for up to two thirds of the variation in grass and forb ionomes across 54 North American grasslands. Consistent with the supply-side hypothesis, the plant-essential ionome of both forbs and grasses tracked soil availability. Grass ionomes were more likely to harvest even nonessential elements like Cd and Sr. Consistent with the grazing hypothesis, cattle-grazed grasslands also accumulated a handful of metals like Cu and Cr. Consistent with the NP-catalysis hypothesis, increases in the macronutrients N and P in grasses were associated with higher densities of cofactors like Zn and Cu. The plant-essential elements of forbs, in contrast, consistently varied as per the nutrient-dilution hypothesis-there was a decrease in elemental parts per million with increasing local carbohydrate production. Combined, these data fit a working hypothesis that grasses maintain lower elemental densities and survive on nutrient-poor patches by opportunistically harvesting soil nutrients. In contrast, nutrient-rich forbs use episodes of high precipitation and temperature to build new carbohydrate biomass, raising leaves higher to compete for light, but diluting the nutrient content in every bite of tissue. Herbivores of forbs may thus be particularly prone to increases in pCO2 via nutrient dilution.


Subject(s)
Grassland , Herbivory , Animals , Cattle , North America , Plants , Poaceae
12.
Ecol Evol ; 11(10): 5413-5423, 2021 May.
Article in English | MEDLINE | ID: mdl-34026017

ABSTRACT

We contrast the response of arthropod abundance and composition to bison grazing lawns during a drought and non-drought year, with an emphasis on acridid grasshoppers, an important grassland herbivore.Grazing lawns are grassland areas where regular grazing by mammalian herbivores creates patches of short-statured, high nutrient vegetation. Grazing lawns are predictable microsites that modify microclimate, plant structure, community composition, and nutrient availability, with likely repercussions for arthropod communities.One year of our study occurred during an extreme drought. Drought mimics some of the effects of mammalian grazers: decreasing above-ground plant biomass while increasing plant foliar percentage nitrogen.We sampled arthropods and nutrient availability on and nearby ("off") 10 bison-grazed grazing lawns in a tallgrass prairie in NE Kansas. Total grasshopper abundance was higher on grazing lawns and the magnitude of this difference increased in the wetter year of 2019 compared to 2018, when drought led to high grass foliar nitrogen concentrations on and off grazing lawns. Mixed-feeding grasshopper abundances were consistently higher on grazing lawns while grass-feeder and forb-feeder abundances were higher on lawns only in 2019, the wetter year. In contrast, the abundance of other arthropods (e.g., Hemiptera, Hymenoptera, and Araneae) did not differ on and off lawns, but increased overall in 2019, relative to the drought of 2018.Understanding these local scale patterns of abundances and community composition improves predictability of arthropod responses to ongoing habitat change.

14.
Ecol Evol ; 10(23): 13143-13153, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304524

ABSTRACT

Insect populations are changing rapidly, and monitoring these changes is essential for understanding the causes and consequences of such shifts. However, large-scale insect identification projects are time-consuming and expensive when done solely by human identifiers. Machine learning offers a possible solution to help collect insect data quickly and efficiently.Here, we outline a methodology for training classification models to identify pitfall trap-collected insects from image data and then apply the method to identify ground beetles (Carabidae). All beetles were collected by the National Ecological Observatory Network (NEON), a continental scale ecological monitoring project with sites across the United States. We describe the procedures for image collection, image data extraction, data preparation, and model training, and compare the performance of five machine learning algorithms and two classification methods (hierarchical vs. single-level) identifying ground beetles from the species to subfamily level. All models were trained using pre-extracted feature vectors, not raw image data. Our methodology allows for data to be extracted from multiple individuals within the same image thus enhancing time efficiency, utilizes relatively simple models that allow for direct assessment of model performance, and can be performed on relatively small datasets.The best performing algorithm, linear discriminant analysis (LDA), reached an accuracy of 84.6% at the species level when naively identifying species, which was further increased to >95% when classifications were limited by known local species pools. Model performance was negatively correlated with taxonomic specificity, with the LDA model reaching an accuracy of ~99% at the subfamily level. When classifying carabid species not included in the training dataset at higher taxonomic levels species, the models performed significantly better than if classifications were made randomly. We also observed greater performance when classifications were made using the hierarchical classification method compared to the single-level classification method at higher taxonomic levels.The general methodology outlined here serves as a proof-of-concept for classifying pitfall trap-collected organisms using machine learning algorithms, and the image data extraction methodology may be used for nonmachine learning uses. We propose that integration of machine learning in large-scale identification pipelines will increase efficiency and lead to a greater flow of insect macroecological data, with the potential to be expanded for use with other noninsect taxa.

15.
Ecol Lett ; 23(7): 1153-1168, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32380580

ABSTRACT

Of the 25 elements required to build most organisms, sodium has a unique set of characteristics that ramify through terrestrial ecology. In plants, sodium is found in low concentrations and has little metabolic function; in plant consumers, particularly animals, sodium is essential to running costly Na-K ATPases. Here I synthesise a diverse literature from physiology, agronomy and ecology, towards identifying sodium's place as the '7th macronutrient', one whose shortfall targets two trophic levels - herbivores and detritivores. I propose that sodium also plays a central, though unheralded role in herbivore digestion, via its importance to maintaining microbiomes and denaturing tannins. I highlight how sodium availability is a key determinant of consumer abundance and the geography of herbivory and detritivory. And I propose a re-appraisal of the assumption that, because sodium is metabolically unimportant to most plants, it is of little use. Instead, I suggest that sodium's critical role in limiting herbivore performance makes it a commodity used by plants to manipulate their herbivores and mutualists, and by consumers like bison and elephants to generate grazing lawns: dependable sources of sodium.


Subject(s)
Ecosystem , Food Chain , Animals , Herbivory , Nutrients , Sodium
16.
Ecology ; 101(6): e03051, 2020 06.
Article in English | MEDLINE | ID: mdl-32239508

ABSTRACT

Analyses of heat tolerance in insects often suggest that this trait is relatively invariant, leading to the use of fixed thermal maxima in models predicting future distribution of species in a warming world. Seasonal environments expose populations to a wide annual temperature variation. To evaluate the simplifying assumption of invariant thermal maxima, we quantified heat tolerance of 26 ant species across three seasons that vary two-fold in mean temperature. Our ultimate goal was to test the hypothesis that heat tolerance tracks monthly temperature. Ant foragers tested at the end of the summer, in September, had higher average critical thermal maximum (CTmax ) compared to those in March and December. Four out of five seasonal generalists, species actively foraging in all three focal months, had, on average, 6°C higher CTmax in September. The invasive fire ant, Solenopsis invicta, was among the thermally plastic species, but the native thermal specialists still maintained higher CTmax than S. invicta. Our study shows that heat tolerance can be plastic, and this should be considered when examining species-level adaptations. Moreover, the plasticity of thermal traits, while potentially costly, may also generate a competitive advantage over species with fixed traits and promote resilience to climate change.


Subject(s)
Ants , Acclimatization , Animals , Climate Change , Seasons , Temperature
17.
J Anim Ecol ; 89(5): 1286-1294, 2020 05.
Article in English | MEDLINE | ID: mdl-32115723

ABSTRACT

We investigate where bottom-up and top-down control regulates ecological communities as a mechanism linking ecological gradients to the geography of consumer abundance and biomass. We use standardized surveys of 54 North American grasslands to test alternate hypotheses predicting 100-fold shifts in the biomass of four common grassland arthropod taxa-Auchenorrhyncha, sucking herbivores, Acrididae, chewing herbivores, Tettigoniidae, omnivores, and Araneae, predators. Bottom-up models predict that consumer biomass tracks plant quantity (e.g. productivity and standing biomass) and quality (nutrient content) and that ectotherm access to food increases with temperature. Each of the focal trophic groups responded differently to these drivers: the biomass of sucking herbivores and omnivores increased with plant biomass; that of chewing herbivores tracked plant quality; and predator biomass did not depend on plant quality, plant quantity or temperature. The Exploitation Ecosystem Hypothesis is a top-down hypothesis that predicts a shift from resource limitation of herbivores when plant production is low, to predator limitation when plant production is high. In grasslands where spider biomass was low, herbivore biomass increased with plant biomass, whereas bottom-up structuring was not evident when spiders were abundant. Furthermore, neither predator biomass nor trophic position (via stable isotope analysis) increased with plant biomass, suggesting predators themselves are top-down limited. Stable isotope analysis revealed that trophic position of the chewing herbivore and omnivore increased significantly with plant biomass, suggesting these groups increased scavenging and meat consumption in grasslands with higher carbohydrate availability. Taken together, our snapshot sampling documents gradients of food web structure across 54 grasslands, consistent with multiple hypotheses of bottom-up and top-down regulation.


Subject(s)
Arthropods , Animals , Biomass , Ecosystem , Food Chain , Grassland , Herbivory
18.
Proc Natl Acad Sci U S A ; 117(13): 7271-7275, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32152101

ABSTRACT

Evidence for global insect declines mounts, increasing our need to understand underlying mechanisms. We test the nutrient dilution (ND) hypothesis-the decreasing concentration of essential dietary minerals with increasing plant productivity-that particularly targets insect herbivores. Nutrient dilution can result from increased plant biomass due to climate or CO2 enrichment. Additionally, when considering long-term trends driven by climate, one must account for large-scale oscillations including El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). We combine long-term datasets of grasshopper abundance, climate, plant biomass, and end-of-season foliar elemental content to examine potential drivers of abundance cycles and trends of this dominant herbivore. Annual grasshopper abundances in 16- and 22-y time series from a Kansas prairie revealed both 5-y cycles and declines of 2.1-2.7%/y. Climate cycle indices of spring ENSO, summer NAO, and winter or spring PDO accounted for 40-54% of the variation in grasshopper abundance, mediated by effects of weather and host plants. Consistent with ND, grass biomass doubled and foliar concentrations of N, P, K, and Na-nutrients which limit grasshopper abundance-declined over the same period. The decline in plant nutrients accounted for 25% of the variation in grasshopper abundance over two decades. Thus a warming, wetter, more CO2-enriched world will likely contribute to declines in insect herbivores by depleting nutrients from their already nutrient-poor diet. Unlike other potential drivers of insect declines-habitat loss, light and chemical pollution-ND may be widespread in remaining natural areas.


Subject(s)
Conservation of Natural Resources/trends , Demography/trends , Grasshoppers , Animals , Biomass , Climate Change/statistics & numerical data , Ecosystem , El Nino-Southern Oscillation , Grassland , Herbivory , Insecta , Kansas , Nutrients , Poaceae , Seasons , Weather
19.
Ecology ; 101(6): e03033, 2020 06.
Article in English | MEDLINE | ID: mdl-32112407

ABSTRACT

Arthropod abundance and diversity often track plant biomass and diversity at the local scale. However, under altered precipitation regimes and anthropogenic disturbances, plant-arthropod relationships are expected to be increasingly controlled by abiotic, rather than biotic, factors. We used an experimental precipitation gradient combined with human management in a temperate mixed-grass prairie to examine (1) how two drivers, altered precipitation and biomass removal, can synergistically affect abiotic factors and plant communities and (2) how these effects can cascade upward, impacting the arthropod food web. Both drought and hay harvest increased soil surface temperature, and drought decreased soil moisture. Arthropod abundance decreased with low soil moisture and, contrary to our predictions, decreased with increased plant biomass. Arthropod diversity increased with soil moisture, decreased with high surface temperatures, and tracked arthropod abundance but was unaffected by plant diversity or quality. Our experiment demonstrates that arthropod abundance is directly constrained by abiotic factors and plant biomass, in turn constraining local arthropod diversity. If robust, this result suggests climate change in the southern Great Plains may directly reduce arthropod diversity.


Subject(s)
Arthropods , Animals , Biodiversity , Biomass , Droughts , Grassland , Humans , Plants
20.
J Anim Ecol ; 89(2): 276-284, 2020 02.
Article in English | MEDLINE | ID: mdl-31713243

ABSTRACT

Sugar and sodium are essential nutrients to above- and below-ground consumers. Unlike other properties of ecological communities such as abundance and richness, we know relatively little about nutritional geography-the sources and supply rates of nutrients, and how and why they vary across communities and ecosystems. Towards a remedy, we present a suite of hypotheses for how sodium and sugary exudate availability should vary for a common omnivore-the ants-and test them using a survey of 53 North American grasslands. We do so by running transects of salt and sugar baits and inferring the magnitude of environmental supplies as the inverse of their use as exogenous baits. We then use estimates of potential drivers of the availability of salt and sugary exudates-plant and soil nutrients, and bioclimatic variables-to test the best predictors of sodium and salt use by ant communities. Beyond a baseline of ant activity, salt use increased as an inverse of the amount of sodium in an ecosystem's plant tissue, but not its soils. Plant sodium varied by two orders of magnitude in grasslands across 16° latitude. This suggests that plant exudates are an important source of sodium for grassland consumers. The three drivers that best predict exogenous sugar use by ants all point to factors constraining sugar production: net above-ground productivity, how far the community is into that year's growing season (both reflecting the rates of photosynthesis) and, intriguingly, the potassium content of plant tissue, which is likely linked to exudate production via plant turgor. These data suggest that ants and other consumers across a range of grasslands and climate vary significantly in the demand and supply of sugar and salt. This nutritional geography ultimately arises from gradients of climate and biogeochemistry with implications for the geography of plant-consumer interactions.


Subject(s)
Ants , Animals , Ecosystem , Geography , Grassland , Sodium , Sugars , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...