Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Total Environ ; 789: 148006, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34082206

ABSTRACT

This case study provides a framework for future monitoring and evidence for human source pollution in the Khumbu region, Nepal. We analyzed the chemical composition (major ions, major/trace elements, black carbon, and stable water isotopes) of pre-monsoon stream water (4300-5250 m) and snow (5200-6665 m) samples collected from Mt. Everest, Mt. Lobuche, and the Imja Valley during the 2019 pre-monsoon season, in addition to a shallow ice core recovered from the Khumbu Glacier (5300 m). In agreement with previous work, pre-monsoon aerosol deposition is dominated by dust originating from western sources and less frequently by transport from southerly air mass sources as demonstrated by evidence of one of the strongest recorded pre-monsoon events emanating from the Bay of Bengal, Cyclone Fani. Elevated concentrations of human-sourced metals (e.g., Pb, Bi, As) are found in surface snow and stream chemistry collected in the Khumbu region. As the most comprehensive case study of environmental chemistry in the Khumbu region, this research offers sufficient evidence for increased monitoring in this watershed and surrounding areas.


Subject(s)
Air Pollutants , Cyclonic Storms , Air Pollutants/analysis , Environmental Monitoring , Humans , Nepal , Rivers , Seasons , Snow
3.
Environ Int ; 146: 106281, 2021 01.
Article in English | MEDLINE | ID: mdl-33395932

ABSTRACT

Carbonaceous matter, including organic carbon (OC) and black carbon (BC), is an important climate forcing agent and contributes to glacier retreat in the Himalayas and the Tibetan Plateau (HTP). The HTP - the so-called "Third Pole" - contains the most extensive glacial area outside of the polar regions. Considerable research on carbonaceous matter in the HTP has been conducted, although this research has been challenging due to the complex terrain and strong spatiotemporal heterogeneity of carbonaceous matter in the HTP. A comprehensive investigation of published atmospheric and snow data for HTP carbonaceous matter concentration, deposition and light absorption is presented, including how these factors vary with time and other parameters. Carbonaceous matter concentrations in the atmosphere and glaciers of the HTP are found to be low. Analysis of water-insoluable organic carbon and BC from snowpits reveals that concentrations of OC and BC in the atmosphere and glacier samples in arid regions of the HTP may be overestimated due to contributions from inorganic carbon in mineral dust. Due to the remote nature of the HTP, carbonaceous matter found in the HTP has generally been transported from outside the HTP (e.g., South Asia), although local HTP emissions may also be important at some sites. This review provides essential data and a synthesis of current thinking for studies on atmospheric transport modeling and radiative forcing of carbonaceous matter in the HTP.


Subject(s)
Air Pollutants , Ice Cover , Aerosols/analysis , Air Pollutants/analysis , Asia , Atmosphere , Carbon/analysis , Environmental Monitoring , Tibet
4.
Science ; 313(5788): 827-31, 2006 Aug 11.
Article in English | MEDLINE | ID: mdl-16902135

ABSTRACT

Antarctic snowfall exhibits substantial variability over a range of time scales, with consequent impacts on global sea level and the mass balance of the ice sheets. To assess how snowfall has affected the thickness of the ice sheets in Antarctica and to provide an extended perspective, we derived a 50-year time series of snowfall accumulation over the continent by combining model simulations and observations primarily from ice cores. There has been no statistically significant change in snowfall since the 1950s, indicating that Antarctic precipitation is not mitigating global sea level rise as expected, despite recent winter warming of the overlying atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...