Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 2(4): 100905, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34746864

ABSTRACT

Immunocompetent pet dogs develop spontaneous, human-like cancers, representing a parallel patient population for the investigation of chimeric antigen receptor (CAR) therapies. We have optimized a retrovirus-based protocol to efficiently CAR transduce primary T cells from healthy and tumor-bearing dogs. While transduction efficiencies and CAR-T expansion vary among dogs, CAR expression is typically higher and more stable compared with previous protocols, thus enabling human and comparative oncology researchers to use the dog as a pre-clinical model for human CAR-T cell research. For complete details on the use and execution of this protocol, please refer to Panjwani et al. (2020).


Subject(s)
Genetic Engineering/methods , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/physiology , Animals , Cells, Cultured , Dogs , Neoplasms/therapy , Neoplasms/veterinary
2.
Proc Natl Acad Sci U S A ; 115(43): E10089-E10098, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30305426

ABSTRACT

Classically, the unfolded protein response (UPR) safeguards secretory pathway proteostasis. The most ancient arm of the UPR, the IRE1-activated spliced X-box binding protein 1 (XBP1s)-mediated response, has roles in secretory pathway maturation beyond resolving proteostatic stress. Understanding the consequences of XBP1s activation for cellular processes is critical for elucidating mechanistic connections between XBP1s and development, immunity, and disease. Here, we show that a key functional output of XBP1s activation is a cell type-dependent shift in the distribution of N-glycan structures on endogenous membrane and secreted proteomes. For example, XBP1s activity decreased levels of sialylation and bisecting GlcNAc in the HEK293 membrane proteome and secretome, while substantially increasing the population of oligomannose N-glycans only in the secretome. In HeLa cell membranes, stress-independent XBP1s activation increased the population of high-mannose and tetraantennary N-glycans, and also enhanced core fucosylation. mRNA profiling experiments suggest that XBP1s-mediated remodeling of the N-glycome is, at least in part, a consequence of coordinated transcriptional resculpting of N-glycan maturation pathways by XBP1s. The discovery of XBP1s-induced N-glycan structural remodeling on a glycome-wide scale suggests that XBP1s can act as a master regulator of N-glycan maturation. Moreover, because the sugars on cell-surface proteins or on proteins secreted from an XBP1s-activated cell can be molecularly distinct from those of an unactivated cell, these findings reveal a potential new mechanism for translating intracellular stress signaling into altered interactions with the extracellular environment.


Subject(s)
Polysaccharides/metabolism , X-Box Binding Protein 1/metabolism , Cell Line , Cell Line, Tumor , HEK293 Cells , HeLa Cells , Humans , Mannose/metabolism , Proteome/metabolism , Signal Transduction/physiology , Transcription, Genetic/physiology , Unfolded Protein Response/physiology
3.
Nat Commun ; 6: 6194, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25708191

ABSTRACT

Galectins are glycan-binding proteins involved in various biological processes including cell/cell interactions. During B-cell development, bone marrow stromal cells secreting galectin-1 (GAL1) constitute a specific niche for pre-BII cells. Besides binding glycans, GAL1 is also a pre-B cell receptor (pre-BCR) ligand that induces receptor clustering, the first checkpoint of B-cell differentiation. The GAL1/pre-BCR interaction is the first example of a GAL1/unglycosylated protein interaction in the extracellular compartment. Here we show that GAL1/pre-BCR interaction modifies GAL1/glycan affinity and particularly inhibits binding to LacNAc containing epitopes. GAL1/pre-BCR interaction induces local conformational changes in the GAL1 carbohydrate-binding site generating a reduction in GAL1/glycan affinity. This fine tuning of GAL1/glycan interactions may be a strategic mechanism for allowing pre-BCR clustering and pre-BII cells departure from their niche. Altogether, our data suggest a novel mechanism for a cell to modify the equilibrium of the GAL1/glycan lattice involving GAL1/unglycosylated protein interactions.


Subject(s)
Galectin 1/metabolism , Polysaccharides/metabolism , Pre-B Cell Receptors/metabolism , Animals , Carbohydrate Metabolism , Cell Line , Epitope Mapping , Humans , Mice , Precursor Cells, B-Lymphoid/metabolism
4.
Biochem Biophys Res Commun ; 445(4): 774-9, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24463102

ABSTRACT

Glycosylation is an intricate process requiring the coordinated action of multiple proteins, including glycosyltransferases, glycosidases, sugar nucleotide transporters and trafficking proteins. Work by several groups points to a role for microRNA (miRNA) in controlling the levels of specific glycosyltransferases involved in cancer, neural migration and osteoblast formation. Recent work in our laboratory suggests that miRNA are a principal regulator of the glycome, translating genomic information into the glycocode through tuning of enzyme levels. Herein we overlay predicted miRNA regulation of glycosylation related genes (glycogenes) onto maps of the common N-linked and O-linked glycan biosynthetic pathways to identify key regulatory nodes of the glycome. Our analysis provides insights into glycan regulation and suggests that at the regulatory level, glycogenes are non-redundant.


Subject(s)
Glycosyltransferases/genetics , MicroRNAs/genetics , Polysaccharides/genetics , Biosynthetic Pathways , Gene Expression Regulation , Glycosylation , Humans , Polysaccharides/chemistry , Polysaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...