Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 195: 199-209, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29414579

ABSTRACT

Recent studies highlight that obesity may alter the electric activity in brain areas triggering appetite and craving. Transcranial direct current brain stimulation (tDCS) has recently emerged as a safe alternative for treating food addiction via modulating cortical excitability without any high-risk surgical procedure to be utilized. As for anodal-type tDCS (atDCS), we observe increased excitability and spontaneous firing of the cortical neurons, whilst for the cathodal-type tDCS (ctDCS) a significant decrease is induced. Unfortunately, for the method to be fully used in a clinical setting, its biochemical action mechanism must be precisely defined, although it is proposed that molecular remodelling processes play in concert with brain activity changes involving the ions of: Na, Cl, K and Ca. Herein, we proposed for the first time Fourier transform infrared (FTIR) and synchrotron X-ray fluorescence (SRXRF) microprobes for a combined molecular and elemental analysis in the brain areas implicated appetite control, upon experimental treatment by either atDCS or ctDCS. The study, although preliminary, shows that by stimulating the prefrontal cortex in the rats fed high-caloric nutrients, the feeding behavior can be significantly changed, resulting in significantly inhibited appetite. Both, atDCS and ctDCS produced significant molecular changes involving qualitative and structural properties of lipids, whereas atDCS was found with a somewhat more significant effect on protein secondary structure in all the brain areas investigated. Also, tDCS was reported to reduce surface masses of Na, Cl, K, and Ca in almost all brain areas investigated, although the atDCS deemed to have a stronger neuro-modulating effect. Taken together, one can report that tDCS is an effective treatment technique, and its action mechanism in the appetite control seems to involve a variety of lipid-, protein- and metal/non-metal-ion-driven biochemical changes, regardless the current polarization.


Subject(s)
Appetite/physiology , Brain/physiology , Elements , Feeding Behavior/physiology , Transcranial Direct Current Stimulation/methods , Animals , Appetite/drug effects , Brain/drug effects , Feeding Behavior/drug effects , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...