Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; : e0070724, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832780

ABSTRACT

Bacterial communities are highly complex, with interaction networks dictating ecosystem function. Bacterial interactions are constrained by the spatial organization of these microbial communities, yet studying the spatial organization of microbial communities at the single-cell level has been technically challenging. Here, we use the recently developed high-phylogenetic-resolution microbiota mapping by fluorescence in situ hybridization technology to image the gut microbiota at the species and single-cell level. We simultaneously image 63 different bacterial species to spatially characterize the perturbation and recovery of the gut microbiota to ampicillin and vancomycin in the cecum and distal colon of mice. To decipher the biology in this complex imaging data, we developed an analytical framework to characterize the spatial changes of the gut microbiota to a perturbation. The three-tiered analytical approach includes image-level diversity, pairwise colocalization analysis, and hypothesis-driven neighborhood analysis. Through this workflow, we identify biogeographic and antibiotic-based differences in the spatial organization of the gut microbiota. We demonstrate that the cecal microbiota has increased micrometer-scale diversity than the colon at baseline and recovers better from perturbation. Also, we identify potential foundation and keystone species that have high baseline neighborhood richness and that are associated with recovery from antibiotics. Through this workflow, we add a spatial layer to the characterization of bacterial communities and progress toward a better understanding of bacterial interactions leading to improved microbiome modulation strategies. IMPORTANCE: Antibiotics have broad off-target effects on the gut microbiome. When the microbial community is unable to recover from antibiotics, it can lead to increased susceptibility to gastrointestinal infections and increased risk of immunological and metabolic diseases. In this study, we work to better understand how the gut microbiota recovers from antibiotics by employing a recent technology to image the entire bacterial community at once. Through this approach, we characterize the spatial changes in the gut microbiota after treatment with model antibiotics in both the cecum and colon of mice. We find antibiotic- and biogeographic-dependent spatial changes between bacterial species and that many of these spatial colocalizations do not recover to baseline levels even 35 days after antibiotic administration.

2.
J Appl Microbiol ; 120(4): 1085-99, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26784529

ABSTRACT

AIMS: To test the antimicrobial and antibiofilm properties of a nitric oxide (NO)-releasing polymer against wound-relevant bacterial pathogens. METHODS AND RESULTS: Using a variety of 96-well plate assay systems that include standard well plates and the minimum biofilm eradication concentration biofilm assay well plate, a NO-releasing polymer based on (poly)acrylonitrile (PAN/NO) was studied for antimicrobial and antibiofilm activity against the common wound pathogens Pseudomonas aeruginosa (PAO1), Staphylococcus aureus (Mu50) and Enterococcus faecalis (V583). The polymer was capable of dispersing single-species biofilms of Ps. aeruginosa as well as a more clinically relevant multispecies biofilm that incorporates Ps. aeruginosa along with Staph. aureus and Ent. faecalis. PAN/NO also synergistically enhanced the susceptibility of the multispecies biofilms to the common broad-spectrum antibiotic, ciprofloxacin. Multiple in vitro biocompatibility assays show that PAN/NO has limited potential for mammalian cytotoxicity. CONCLUSION: This study demonstrates the feasibility of utilizing the NO-releasing polymer, PAN/NO, to manage biofilms formed by wound-relevant pathogens, and provides proof-of-concept for use of this NO-releasing polymer platform across multiple disciplines where bacterial biofilms pose significant problems. SIGNIFICANCE AND IMPACT OF STUDY: In the clinical sector, bacterial biofilms represent a substantial treatment challenge for health care professionals and are widely recognized as a key factor in prolonging patient morbidity. This study highlights the potential role for the ubiquitous signalling molecule nitric oxide (NO) as an antibiofilm therapy.


Subject(s)
Acrylic Resins/chemistry , Biofilms/drug effects , Enterococcus faecalis/drug effects , Nitric Oxide/pharmacology , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Ciprofloxacin/pharmacology , Enterococcus faecalis/physiology , Pseudomonas aeruginosa/physiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology
3.
J Appl Microbiol ; 117(5): 1472-86, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25081571

ABSTRACT

AIMS: To design and synthesize a library of structurally related, small molecules related to homologues of compounds produced by the plant Petiveria alliacea and determine their ability to interfere with AI-2 cell-cell communication and biofilm formation by oral bacteria. Many human diseases are associated with persistent bacterial biofilms. Oral biofilms (dental plaque) are problematic as they are often associated with tooth decay, periodontal disease and systemic disorders such as heart disease and diabetes. METHODS AND RESULTS: Using a microplate-based approach, a bio-inspired small molecule library was screened for anti-biofilm activity against the oral species Streptococcus mutans UA159, Streptococcus sanguis 10556 and Actinomyces oris MG1. To complement the static screen, a flow-based BioFlux microfluidic system screen was also performed under conditions representative of the human oral cavity. Several compounds were found to display biofilm inhibitory activity in all three of the oral bacteria tested. These compounds were also shown to inhibit bioluminescence by Vibrio harveyi and were thus inferred to be quorum sensing (QS) inhibitors. CONCLUSION: Due to the structural similarity of these compounds to each other, and to key molecules in AI-2 biosynthetic pathways, we propose that these molecules potentially reduce biofilm formation via antagonism of QS or QS-related pathways. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the potential for a non-antimicrobial-based strategy, focused on AI-2 cell-cell signalling, to control the development of dental plaque. Considering that many bacterial species use AI-2 cell-cell signalling, as well as the increased concern of the use of antimicrobials in healthcare products, such an anti-biofilm approach could also be used to control biofilms in environments beyond the human oral cavity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Quorum Sensing/drug effects , Sulfoxides/pharmacology , Actinomyces/drug effects , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Bacteria/metabolism , Cysteine , Dental Plaque/microbiology , Humans , Streptococcus mutans/genetics , Streptococcus mutans/physiology , Streptococcus sanguis/drug effects , Sulfur Compounds/pharmacology , Transcription, Genetic/drug effects , Vibrio/drug effects , Vibrio/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...