Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
2.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36633903

ABSTRACT

Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined. While methylation is known to alter gene expression, the importance of this causal relationship is obscured by array-based technologies since coverage outside promoter regions is low. To overcome these challenges, we performed methylation sequencing using leukocytes derived from participants of the Finnish Diabetic Nephropathy (FinnDiane) type 1 diabetes (T1D) study (n = 39) that was subsequently replicated in a larger validation cohort (n = 296). Gene body-related regions made up more than 60% of the methylation differences and emphasized the importance of methylation sequencing. We observed differentially methylated genes associated with DN in 3 independent T1D registries originating from Denmark (n = 445), Hong Kong (n = 107), and Thailand (n = 130). Reduced DNA methylation at CTCF and Pol2B sites was tightly connected with DN pathways that include insulin signaling, lipid metabolism, and fibrosis. To define the pathophysiological significance of these population findings, methylation indices were assessed in human renal cells such as podocytes and proximal convoluted tubule cells. The expression of core genes was associated with reduced methylation, elevated CTCF and Pol2B binding, and the activation of insulin-signaling phosphoproteins in hyperglycemic cells. These experimental observations also closely parallel methylation-mediated regulation in human macrophages and vascular endothelial cells.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Humans , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Genome-Wide Association Study , Endothelial Cells/metabolism , DNA Methylation , Insulin/metabolism
3.
Mol Psychiatry ; 28(4): 1647-1663, 2023 04.
Article in English | MEDLINE | ID: mdl-36117209

ABSTRACT

Childhood apraxia of speech (CAS), the prototypic severe childhood speech disorder, is characterized by motor programming and planning deficits. Genetic factors make substantive contributions to CAS aetiology, with a monogenic pathogenic variant identified in a third of cases, implicating around 20 single genes to date. Here we aimed to identify molecular causation in 70 unrelated probands ascertained with CAS. We performed trio genome sequencing. Our bioinformatic analysis examined single nucleotide, indel, copy number, structural and short tandem repeat variants. We prioritised appropriate variants arising de novo or inherited that were expected to be damaging based on in silico predictions. We identified high confidence variants in 18/70 (26%) probands, almost doubling the current number of candidate genes for CAS. Three of the 18 variants affected SETBP1, SETD1A and DDX3X, thus confirming their roles in CAS, while the remaining 15 occurred in genes not previously associated with this disorder. Fifteen variants arose de novo and three were inherited. We provide further novel insights into the biology of child speech disorder, highlighting the roles of chromatin organization and gene regulation in CAS, and confirm that genes involved in CAS are co-expressed during brain development. Our findings confirm a diagnostic yield comparable to, or even higher, than other neurodevelopmental disorders with substantial de novo variant burden. Data also support the increasingly recognised overlaps between genes conferring risk for a range of neurodevelopmental disorders. Understanding the aetiological basis of CAS is critical to end the diagnostic odyssey and ensure affected individuals are poised for precision medicine trials.


Subject(s)
Apraxias , Speech Disorders , Child , Humans , Speech Disorders/genetics , Apraxias/genetics , Chromosome Mapping , Causality , Brain , Histone-Lysine N-Methyltransferase
4.
Circulation ; 143(16): 1614-1628, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33682422

ABSTRACT

BACKGROUND: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. METHODS: Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. RESULTS: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate that the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. CONCLUSIONS: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.


Subject(s)
Heart/physiopathology , Receptors, Progesterone/metabolism , Female , Humans , Male , Sex Factors
5.
Europace ; 23(3): 441-450, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33200177

ABSTRACT

AIMS: In 2003, an Australian woman was convicted by a jury of smothering and killing her four children over a 10-year period. Each child died suddenly and unexpectedly during a sleep period, at ages ranging from 19 days to 18 months. In 2019 we were asked to investigate if a genetic cause could explain the children's deaths as part of an inquiry into the mother's convictions. METHODS AND RESULTS: Whole genomes or exomes of the mother and her four children were sequenced. Functional analysis of a novel CALM2 variant was performed by measuring Ca2+-binding affinity, interaction with calcium channels and channel function. We found two children had a novel calmodulin variant (CALM2 G114R) that was inherited maternally. Three genes (CALM1-3) encode identical calmodulin proteins. A variant in the corresponding residue of CALM3 (G114W) was recently reported in a child who died suddenly at age 4 and a sibling who suffered a cardiac arrest at age 5. We show that CALM2 G114R impairs calmodulin's ability to bind calcium and regulate two pivotal calcium channels (CaV1.2 and RyR2) involved in cardiac excitation contraction coupling. The deleterious effects of G114R are similar to those produced by G114W and N98S, which are considered arrhythmogenic and cause sudden cardiac death in children. CONCLUSION: A novel functional calmodulin variant (G114R) predicted to cause idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, or mild long QT syndrome was present in two children. A fatal arrhythmic event may have been triggered by their intercurrent infections. Thus, calmodulinopathy emerges as a reasonable explanation for a natural cause of their deaths.


Subject(s)
Infanticide , Tachycardia, Ventricular , Arrhythmias, Cardiac , Australia , Child , Child, Preschool , Death, Sudden, Cardiac/etiology , Female , Humans , Infant , Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics
6.
ESC Heart Fail ; 7(5): 2468-2478, 2020 10.
Article in English | MEDLINE | ID: mdl-32618141

ABSTRACT

AIMS: Natriuretic peptides are useful for diagnosis and prognostication of heart failure of any cause. Now, research aims to discover novel biomarkers that will more specifically define the heart failure phenotype. DNA methylation plays a critical role in the development of cardiovascular disease with the potential to predict fundamental pathogenic processes. There is a lack of data relating DNA methylation in heart failure that specifically focuses on patients with severe multi-vessel coronary artery disease. To begin to address this, we conducted a pilot study uniquely exploring the utility of powerful whole-genome methyl-binding domain-capture sequencing in a cohort of cardiac surgery patients, matched for the severity of their coronary artery disease, aiming to identify candidate peripheral blood DNA methylation markers of ischaemic cardiomyopathy and heart failure. METHODS AND RESULTS: We recruited a cohort of 20 male patients presenting for coronary artery bypass graft surgery with phenotypic extremes of heart failure but who otherwise share a similar coronary ischaemic burden, age, sex, and ethnicity. Methylation profiling in patient blood samples was performed using methyl-binding domain-capture sequencing. Differentially methylated regions were validated using targeted bisulfite sequencing. Gene set enrichment analysis was performed to identify differences in methylation at or near gene promoters in certain known Reactome pathways. We detected 567 188 methylation peaks of which our general linear model identified 68 significantly differentially methylated regions in heart failure with a false discovery rate <0.05. Of these regions, 48 occurred within gene bodies and 25 were located near enhancer elements, some within coding genes and some in non-coding genes. Gene set enrichment analyses identified 103 significantly enriched gene sets (false discovery rate <0.05) in heart failure. Validation analysis of regions with the strongest differential methylation data was performed for two genes: HDAC9 and the uncharacterized miRNA gene MIR3675. Genes of particular interest as novel candidate markers of the heart failure phenotype with reduced methylation were HDAC9, JARID2, and GREM1 and with increased methylation PDSS2. CONCLUSIONS: We demonstrate the utility of methyl-binding domain-capture sequencing to evaluate peripheral blood DNA methylation markers in a cohort of cardiac surgical patients with severe multi-vessel coronary artery disease and phenotypic extremes of heart failure. The differential methylation status of specific coding genes identified are candidates for larger longitudinal studies. We have further demonstrated the value and feasibility of examining DNA methylation during the perioperative period to highlight biological pathways and processes contributing to complex phenotypes.


Subject(s)
Coronary Artery Disease , Heart Failure , Coronary Artery Disease/complications , Coronary Artery Disease/diagnosis , Coronary Artery Disease/genetics , CpG Islands , DNA Methylation , Epigenesis, Genetic , Heart Failure/genetics , Humans , Male , Pilot Projects
7.
BMC Genomics ; 21(1): 447, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600408

ABSTRACT

BACKGROUND: Inference of biological pathway activity via gene set enrichment analysis is frequently used in the interpretation of clinical and other omics data. With the proliferation of new omics profiling approaches and ever-growing size of data sets generated, there is a lack of tools available to perform and visualise gene set enrichments in analyses involving multiple contrasts. RESULTS: To address this, we developed mitch, an R package for multi-contrast gene set enrichment analysis. It uses a rank-MANOVA statistical approach to identify sets of genes that exhibit joint enrichment across multiple contrasts. Its unique visualisation features enable the exploration of enrichments in up to 20 contrasts. We demonstrate the utility of mitch with case studies spanning multi-contrast RNA expression profiling, integrative multi-omics, tool benchmarking and single-cell RNA sequencing. Using simulated data we show that mitch has similar accuracy to state of the art tools for single-contrast enrichment analysis, and superior accuracy in identifying multi-contrast enrichments. CONCLUSION: mitch is a versatile tool for rapidly and accurately identifying and visualising gene set enrichments in multi-contrast omics data. Mitch is available from Bioconductor ( https://bioconductor.org/packages/mitch ).


Subject(s)
Computational Biology/methods , Single-Cell Analysis/methods , Gene Expression Profiling , Gene Regulatory Networks , Humans , Sequence Analysis, RNA , Software
8.
Protein Eng Des Sel ; 32(2): 67-76, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31504890

ABSTRACT

Aggregation of islet amyloid polypeptide (IAPP) into islet amyloid results in ß-cell toxicity in human type 2 diabetes. To determine the effect of islet amyloid formation on gene expression, we performed ribonucleic acid (RNA) sequencing (RNA-seq) analysis using cultured islets from either wild-type mice (mIAPP), which are not amyloid prone, or mice that express human IAPP (hIAPP), which develop amyloid. Comparing mIAPP and hIAPP islets, 5025 genes were differentially regulated (2439 upregulated and 2586 downregulated). When considering gene sets (reactomes), 248 and 52 pathways were up- and downregulated, respectively. Of the top 100 genes upregulated under two conditions of amyloid formation, seven were common. Of these seven genes, only steroidogenic acute regulatory protein (Star) demonstrated no effect of glucose per se to modify its expression. We confirmed this differential gene expression using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and also demonstrated the presence of STAR protein in islets containing amyloid. Furthermore, Star is a part of reactomes representing metabolism, metabolism of lipids, metabolism of steroid hormones, metabolism of steroids and pregnenolone biosynthesis. Thus, examining gene expression that is differentially regulated by islet amyloid has the ability to identify new molecules involved in islet physiology and pathology applicable to type 2 diabetes.


Subject(s)
Amyloid/biosynthesis , Islets of Langerhans/metabolism , Phosphoproteins/genetics , RNA-Seq , Up-Regulation , Animals , Dose-Response Relationship, Drug , Glucose/pharmacology , Humans , Islets of Langerhans/drug effects , Mice , Mice, Inbred C57BL , Up-Regulation/drug effects
9.
PLoS Genet ; 15(6): e1008181, 2019 06.
Article in English | MEDLINE | ID: mdl-31216276

ABSTRACT

The increasing worldwide prevalence of Hepatocellular carcinoma (HCC), characterized by resistance to conventional chemotherapy, poor prognosis and eventually mortality, place it as a prime target for new modes of prevention and treatment. Hepatitis C Virus (HCV) is the predominant risk factor for HCC in the US and Europe. Multiple epidemiological studies showed that sustained virological responses (SVR) following treatment with the powerful direct acting antivirals (DAAs), which have replaced interferon-based regimes, do not eliminate tumor development. We aimed to identify an HCV-specific pathogenic mechanism that persists post SVR following DAAs treatment. We demonstrate that HCV infection induces genome-wide epigenetic changes by performing chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) for histone post-translational modifications that are epigenetic markers for active and repressed chromatin. The changes in histone modifications correlate with reprogramed host gene expression and alter signaling pathways known to be associated with HCV life cycle and HCC. These epigenetic alterations require the presence of HCV RNA or/and expression of the viral proteins in the cells. Importantly, the epigenetic changes induced following infection persist as an "epigenetic signature" after virus eradication by DAAs treatment, as detected using in vitro HCV infection models. These observations led to the identification of an 8 gene signature that is associated with HCC development and demonstrate persistent epigenetic alterations in HCV infected and post SVR liver biopsy samples. The epigenetic signature was reverted in vitro by drugs that inhibit epigenetic modifying enzyme and by the EGFR inhibitor, Erlotinib. This epigenetic "scarring" of the genome, persisting following HCV eradication, suggest a novel mechanism for the persistent pathogenesis of HCV after its eradication by DAAs. Our study offers new avenues for prevention of the persistent oncogenic effects of chronic hepatitis infections using specific drugs to revert the epigenetic changes to the genome.


Subject(s)
Carcinoma, Hepatocellular/genetics , Epigenesis, Genetic/genetics , Hepacivirus/genetics , Hepatitis C/genetics , Liver Neoplasms/genetics , Aged , Antiviral Agents/administration & dosage , Biopsy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Chromatin/genetics , Epigenesis, Genetic/drug effects , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride , Female , Gene Expression Regulation, Neoplastic/drug effects , Hepacivirus/pathogenicity , Hepatitis C/drug therapy , Hepatitis C/pathology , Hepatitis C/virology , Histone Code/genetics , Histones/genetics , Host-Pathogen Interactions/genetics , Humans , Interferons/administration & dosage , Liver/drug effects , Liver/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/virology , Male , Middle Aged , Risk Factors , Signal Transduction/drug effects , Sustained Virologic Response
10.
Epilepsia ; 60(6): 1091-1103, 2019 06.
Article in English | MEDLINE | ID: mdl-31074842

ABSTRACT

OBJECTIVES: Focal cortical dysplasia (FCD) is a major cause of drug-resistant focal epilepsy in children, and the clinicopathological classification remains a challenging issue in daily practice. With the recent progress in DNA methylation-based classification of human brain tumors we examined whether genomic DNA methylation and gene expression analysis can be used to also distinguish human FCD subtypes. METHODS: DNA methylomes and transcriptomes were generated from massive parallel sequencing in 15 surgical FCD specimens, matched with 5 epilepsy and 6 nonepilepsy controls. RESULTS: Differential hierarchical cluster analysis of DNA methylation distinguished major FCD subtypes (ie, Ia, IIa, and IIb) from patients with temporal lobe epilepsy patients and nonepileptic controls. Targeted panel sequencing identified a novel likely pathogenic variant in DEPDC5 in a patient with FCD type IIa. However, no enrichment of differential DNA methylation or gene expression was observed in mechanistic target of rapamycin (mTOR) pathway-related genes. SIGNIFICANCE: Our studies extend the evidence for disease-specific methylation signatures toward focal epilepsies in favor of an integrated clinicopathologic and molecular classification system of FCD subtypes incorporating genomic methylation.


Subject(s)
DNA Methylation/genetics , Malformations of Cortical Development/genetics , Adolescent , Adult , Child , Child, Preschool , Cluster Analysis , DNA/genetics , Epilepsies, Partial/classification , Epilepsies, Partial/genetics , Female , Gene Expression Profiling , Genome, Human , Humans , Infant , Male , Malformations of Cortical Development/classification , Malformations of Cortical Development/diagnostic imaging , Middle Aged , RNA, Messenger/genetics , TOR Serine-Threonine Kinases/genetics , Tissue Banks , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Transcriptome , Young Adult
11.
Gigascience ; 8(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30942868

ABSTRACT

BACKGROUND: RNA sequencing (RNA-seq) is an indispensable tool in the study of gene regulation. While the technology has brought with it better transcript coverage and quantification, there remain considerable barriers to entry for the computational biologist to analyse large data sets. There is a real need for a repository of uniformly processed RNA-seq data that is easy to use. FINDINGS: To address these obstacles, we developed Digital Expression Explorer 2 (DEE2), a web-based repository of RNA-seq data in the form of gene-level and transcript-level expression counts. DEE2 contains >5.3 trillion assigned reads from 580,000 RNA-seq data sets including species Escherichia coli, yeast, Arabidopsis, worm, fruit fly, zebrafish, rat, mouse, and human. Base-space sequence data downloaded from the National Center for Biotechnology Information Sequence Read Archive underwent quality control prior to transcriptome and genome mapping using open-source tools. Uniform data processing methods ensure consistency across experiments, facilitating fast and reproducible meta-analyses. CONCLUSIONS: The web interface allows users to quickly identify data sets of interest using accession number and keyword searches. The data can also be accessed programmatically using a specifically designed R package. We demonstrate that DEE2 data are compatible with statistical packages such as edgeR or DESeq. Bulk data are also available for download. DEE2 can be found at http://dee2.io.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Software , High-Throughput Nucleotide Sequencing , Meta-Analysis as Topic , Quality Control , Reproducibility of Results , Sequence Analysis, RNA , Transcriptome , Workflow
12.
Nucleic Acids Res ; 47(5): 2455-2471, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30698808

ABSTRACT

Hepatitis C virus (HCV) infection is the leading cause of chronic hepatitis, which often results in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). HCV possesses an RNA genome and its replication is confined to the cytoplasm. Yet, infection with HCV leads to global changes in gene expression, and chromosomal instability (CIN) in the host cell. The mechanisms by which the cytoplasmic virus affects these nuclear processes are elusive. Here, we show that HCV modulates the function of the Structural Maintenance of Chromosome (SMC) protein complex, cohesin, which tethers remote regions of chromatin. We demonstrate that infection of hepatoma cells with HCV leads to up regulation of the expression of the RAD21 cohesin subunit and changes cohesin residency on the chromatin. These changes regulate the expression of genes associated with virus-induced pathways. Furthermore, siRNA downregulation of viral-induced RAD21 reduces HCV infection. During mitosis, HCV infection induces hypercondensation of chromosomes and the appearance of multi-centrosomes. We provide evidence that the underlying mechanism involves the viral NS3/4 protease and the cohesin regulator, WAPL. Altogether, our results provide the first evidence that HCV induces changes in gene expression and chromosome structure of infected cells by modulating cohesin.


Subject(s)
Carrier Proteins/genetics , Hepacivirus/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Proto-Oncogene Proteins/genetics , Serine Proteases/genetics , Viral Nonstructural Proteins/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Nucleus/virology , Chromatin/genetics , Chromosomal Instability/genetics , Chromosomal Proteins, Non-Histone/genetics , Cytoplasm/virology , DNA-Binding Proteins , Hepacivirus/pathogenicity , Hepatitis C/genetics , Hepatitis C/virology , Hepatocytes/virology , Host-Pathogen Interactions/genetics , Humans , Mitosis/genetics , Virus Replication/genetics , Cohesins
13.
Front Physiol ; 9: 817, 2018.
Article in English | MEDLINE | ID: mdl-30038575

ABSTRACT

While aging is a critical risk factor for heart failure, it remains uncertain whether the aging heart responds differentially to a hypertensive stimuli. Here we investigated phenotypic and transcriptomic differences between the young and aging heart using a mineralocorticoid-excess model of hypertension. Ten-week ("young") and 36-week ("aging") mice underwent a unilateral uninephrectomy with deoxycorticosterone acetate (DOCA) pellet implantation (n = 6-8/group) and were followed for 6 weeks. Cardiac structure and function, blood pressure (BP) and the cardiac transcriptome were subsequently examined. Young and aging DOCA mice had high BP, increased cardiac mass, cardiac hypertrophy, and fibrosis. Left ventricular end-diastolic pressure increased in aging DOCA-treated mice in contrast to young DOCA mice. Interstitial and perivascular fibrosis occurred in response to DOCA, but perivascular fibrosis was greater in aging mice. Transcriptomic analysis showed that young mice had features of higher oxidative stress, likely due to activation of the respiratory electron transport chain. In contrast, aging mice showed up-regulation of collagen formation in association with activation of innate immunity together with markers of inflammation including cytokine and platelet signaling. In comparison to younger mice, aging mice demonstrated different phenotypic and molecular responses to hypertensive stress. These findings have potential implications for the pathogenesis of age-related forms of cardiovascular disease, particularly heart failure.

14.
Mol Nutr Food Res ; 62(14): e1800134, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29882289

ABSTRACT

SCOPE: Early life nutrition has long-lasting influence in adults through key mediators that modulate epigenetic states, although the determinants involved that underlie this response remain controversial. Because of the similarities between metabolic, physiological, and endocrine changes and those occurring in human type 2 diabetes, we studied the interaction of diet during pregnancy regulating RNA adenosine methylation (N6-methyladenosine [m6A]) and the transcriptome in Psammomys obesus. METHODS AND RESULTS: Breeding pairs were randomly allocated standard diet (total digestible energy 18 MJ kg-1 ) or low-fat diet (15 MJ kg-1 ). Offspring were weaned onto the low-fat diet at 4 weeks of age and given ad libitum access, resulting in two experimental groups: 1) male offspring of animals fed a low-fat diet and weaned onto the low-fat diet and 2) male offspring of animals fed a standard diet and weaned onto the low-fat diet. Hypothalamic RNA was used to assess m6A by immunoprecipitation. Parental low-fat diet alters the metabolic phenotype in offspring. An association between parental diet and hypothalamic m6A was observed in regulating the expression of FTO and METTL3 in the offspring. CONCLUSIONS: We propose the regulatory capacity is now broadened for the first time to include m6A in developmental programming and obesity phenotype.

15.
J Am Soc Nephrol ; 29(5): 1437-1448, 2018 05.
Article in English | MEDLINE | ID: mdl-29490938

ABSTRACT

Background The failure of spontaneous resolution underlies chronic inflammatory conditions, including microvascular complications of diabetes such as diabetic kidney disease. The identification of endogenously generated molecules that promote the physiologic resolution of inflammation suggests that these bioactions may have therapeutic potential in the context of chronic inflammation. Lipoxins (LXs) are lipid mediators that promote the resolution of inflammation.Methods We investigated the potential of LXA4 and a synthetic LX analog (Benzo-LXA4) as therapeutics in a murine model of diabetic kidney disease, ApoE-/- mice treated with streptozotocin.Results Intraperitoneal injection of LXs attenuated the development of diabetes-induced albuminuria, mesangial expansion, and collagen deposition. Notably, LXs administered 10 weeks after disease onset also attenuated established kidney disease, with evidence of preserved kidney function. Kidney transcriptome profiling defined a diabetic signature (725 genes; false discovery rate P≤0.05). Comparison of this murine gene signature with that of human diabetic kidney disease identified shared renal proinflammatory/profibrotic signals (TNF-α, IL-1ß, NF-κB). In diabetic mice, we identified 20 and 51 transcripts regulated by LXA4 and Benzo-LXA4, respectively, and pathway analysis identified established (TGF-ß1, PDGF, TNF-α, NF-κB) and novel (early growth response-1 [EGR-1]) networks activated in diabetes and regulated by LXs. In cultured human renal epithelial cells, treatment with LXs attenuated TNF-α-driven Egr-1 activation, and Egr-1 depletion prevented cellular responses to TGF-ß1 and TNF-αConclusions These data demonstrate that LXs can reverse established diabetic complications and support a therapeutic paradigm to promote the resolution of inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Early Growth Response Protein 1/genetics , Lipoxins/therapeutic use , Albuminuria/etiology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Collagen/metabolism , Diabetes Mellitus, Experimental , Diabetic Nephropathies/complications , Disease Models, Animal , Gene Expression Regulation/drug effects , Glomerular Mesangium/pathology , Humans , Injections, Intraperitoneal , Lipoxins/pharmacology , Male , Mice, Knockout, ApoE , NF-kappa B/genetics , Platelet-Derived Growth Factor/genetics , Transcriptome , Transforming Growth Factor beta1/genetics , Tumor Necrosis Factor-alpha/genetics
16.
Acta Neuropathol Commun ; 6(1): 17, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29482641

ABSTRACT

Traumatic brain injury (TBI) induces a wide variety of cellular and molecular changes that can continue for days to weeks to months, leading to functional impairments. Currently, there are no pharmacotherapies in clinical use that favorably modify the post-TBI outcome, due in part to limited understanding of the mechanisms of TBI-induced pathologies. Our system biology analysis tested the hypothesis that chronic transcriptomics changes induced by TBI are controlled by altered DNA-methylation in gene promoter areas or by transcription factors. We performed genome-wide methyl binding domain (MBD)-sequencing (seq) and RNA-seq in perilesional, thalamic, and hippocampal tissue sampled at 3 months after TBI induced by lateral fluid percussion in adult male Sprague-Dawley rats. We investigated the regulated molecular networks and mechanisms underlying the chronic regulation, particularly DNA methylation and transcription factors. Finally, we identified compounds that modulate the transcriptomics changes and could be repurposed to improve recovery. Unexpectedly, DNA methylation was not a major regulator of chronic post-TBI transcriptomics changes. On the other hand, the transcription factors Cebpd, Pax6, Spi1, and Tp73 were upregulated at 3 months after TBI (False discovery rate < 0.05), which was validated using digital droplet polymerase chain reaction. Transcription regulatory network analysis revealed that these transcription factors regulate apoptosis, inflammation, and microglia, which are well-known contributors to secondary damage after TBI. Library of Integrated Network-based Cellular Signatures (LINCS) analysis identified 118 pharmacotherapies that regulate the expression of Cebpd, Pax6, Spi1, and Tp73. Of these, the antidepressant and/or antipsychotic compounds trimipramine, rolipramine, fluspirilene, and chlorpromazine, as well as the anti-cancer therapies pimasertib, tamoxifen, and vorinostat were strong regulators of the identified transcription factors, suggesting their potential to modulate the regulated transcriptomics networks to improve post-TBI recovery.


Subject(s)
Brain Injuries, Traumatic/metabolism , CCAAT-Enhancer-Binding Protein-delta/metabolism , PAX6 Transcription Factor/metabolism , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Transcriptome/physiology , Tumor Protein p73/metabolism , Animals , Brain/metabolism , Brain Injuries, Traumatic/drug therapy , Chronic Disease , DNA Methylation , Disease Models, Animal , Male , Rats, Sprague-Dawley , Transcriptome/drug effects , Up-Regulation
17.
Epigenetics ; 12(11): 991-1003, 2017.
Article in English | MEDLINE | ID: mdl-28886276

ABSTRACT

Given the skyrocketing costs to develop new drugs, repositioning of approved drugs, such as histone deacetylase (HDAC) inhibitors, may be a promising strategy to develop novel therapies. However, a gap exists in the understanding and advancement of these agents to meaningful translation for which new indications may emerge. To address this, we performed systems-level analyses of 33 independent HDAC inhibitor microarray studies. Based on network analysis, we identified enrichment for pathways implicated in metabolic syndrome and diabetes (insulin receptor signaling, lipid metabolism, immunity and trafficking). Integration with ENCODE ChIP-seq datasets identified suppression of EP300 target genes implicated in diabetes. Experimental validation indicates reversal of diabetes-associated EP300 target genes in primary vascular endothelial cells derived from a diabetic individual following inhibition of HDACs (by SAHA), EP300, or EP300 knockdown. Our computational systems biology approach provides an adaptable framework for the prediction of novel therapeutics for existing disease.


Subject(s)
Diabetes Mellitus/genetics , E1A-Associated p300 Protein/genetics , Epigenesis, Genetic , Gene Regulatory Networks , Histone Code/drug effects , Histone Deacetylase Inhibitors/pharmacology , Cells, Cultured , E1A-Associated p300 Protein/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Systems Biology
18.
Circulation ; 136(12): 1123-1139, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28733351

ABSTRACT

BACKGROUND: The inability of the adult mammalian heart to regenerate following injury represents a major barrier in cardiovascular medicine. In contrast, the neonatal mammalian heart retains a transient capacity for regeneration, which is lost shortly after birth. Defining the molecular mechanisms that govern regenerative capacity in the neonatal period remains a central goal in cardiac biology. Here, we assemble a transcriptomic framework of multiple cardiac cell populations during postnatal development and following injury, which enables comparative analyses of the regenerative (neonatal) versus nonregenerative (adult) state for the first time. METHODS: Cardiomyocytes, fibroblasts, leukocytes, and endothelial cells from infarcted and noninfarcted neonatal (P1) and adult (P56) mouse hearts were isolated by enzymatic dissociation and fluorescence-activated cell sorting at day 3 following surgery. RNA sequencing was performed on these cell populations to generate the transcriptome of the major cardiac cell populations during cardiac development, repair, and regeneration. To complement our transcriptomic data, we also surveyed the epigenetic landscape of cardiomyocytes during postnatal maturation by performing deep sequencing of accessible chromatin regions by using the Assay for Transposase-Accessible Chromatin from purified mouse cardiomyocyte nuclei (P1, P14, and P56). RESULTS: Profiling of cardiomyocyte and nonmyocyte transcriptional programs uncovered several injury-responsive genes across regenerative and nonregenerative time points. However, the majority of transcriptional changes in all cardiac cell types resulted from developmental maturation from neonatal stages to adulthood rather than activation of a distinct regeneration-specific gene program. Furthermore, adult leukocytes and fibroblasts were characterized by the expression of a proliferative gene expression network following infarction, which mirrored the neonatal state. In contrast, cardiomyocytes failed to reactivate the neonatal proliferative network following infarction, which was associated with loss of chromatin accessibility around cell cycle genes during postnatal maturation. CONCLUSIONS: This work provides a comprehensive framework and transcriptional resource of multiple cardiac cell populations during cardiac development, repair, and regeneration. Our findings define a regulatory program underpinning the neonatal regenerative state and identify alterations in the chromatin landscape that could limit reinduction of the regenerative program in adult cardiomyocytes.


Subject(s)
Gene Expression Profiling , Heart/physiology , Transcriptome , Animals , Animals, Newborn , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks , Leukocytes/cytology , Leukocytes/metabolism , Mice , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , RNA/isolation & purification , RNA/metabolism , Regeneration/physiology , Sequence Analysis, RNA , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
19.
RNA ; 22(8): 1120-38, 2016 08.
Article in English | MEDLINE | ID: mdl-27284164

ABSTRACT

Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing.


Subject(s)
MicroRNAs/genetics , Sequence Alignment , Humans , RNA, Plant/genetics
20.
Sci Rep ; 6: 25668, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27157830

ABSTRACT

This study tested the hypothesis that acquired epileptogenesis is accompanied by DNA methylation changes independent of etiology. We investigated DNA methylation and gene expression in the hippocampal CA3/dentate gyrus fields at 3 months following epileptogenic injury in three experimental models of epilepsy: focal amygdala stimulation, systemic pilocarpine injection, or lateral fluid-percussion induced traumatic brain injury (TBI) in rats. In the models studies, DNA methylation and gene expression profiles distinguished controls from injured animals. We observed consistent increased methylation in gene bodies and hypomethylation at non-genic regions. We did not find a common methylation signature in all three different models and few regions common to any two models. Our data provide evidence that genome-wide alteration of DNA methylation signatures is a general pathomechanism associated with epileptogenesis and epilepsy in experimental animal models, but the broad pathophysiological differences between models (i.e. pilocarpine, amygdala stimulation, and post-TBI) are reflected in distinct etiology-dependent DNA methylation patterns.


Subject(s)
DNA Methylation/genetics , Epilepsy/genetics , Genome , Animals , Cluster Analysis , Disease Models, Animal , Epilepsy/pathology , Gene Expression Regulation , Male , Molecular Sequence Annotation , Nerve Degeneration/genetics , Nerve Degeneration/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...