Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Int J Biometeorol ; 63(12): 1651-1658, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31511976

ABSTRACT

The focus of our study was airborne alder pollen because it is one of the main causes of inhalant allergies in many countries in the Northern Hemisphere. The main research setback was pollen concentrations during snowfall. Analyses from a 21-year database showed that the hourly patterns of occurrence of airborne Alnus pollen during snowfall differ. Snowfall can cause a decrease in pollen concentrations in the air that may persist for several hours. However, during the snowfall period of 2018, an increase in pollen concentrations was observed. High temperatures during the days preceding snowfall stimulate thermal currents, and pollen could become airborne. During snowfall, airborne pollen grains are supposedly washed out of the atmosphere and numerous pollen grains are deposited on the snow surface. Hypotheses about the long-distance transport of pollen have also been verified. Back-trajectory analysis has revealed that air masses from Belarus and Ukraine were transported to Rzeszow. We found that the influence of snowfall on pollen concentrations is ambiguous and individuals prone to allergies also notice symptoms on days with snowfall and temperatures below zero.


Subject(s)
Alnus , Allergens , Environmental Monitoring , Humans , Pollen , Seasons , Snow
2.
Aerobiologia (Bologna) ; 33(1): 1-12, 2017.
Article in English | MEDLINE | ID: mdl-28255194

ABSTRACT

ABSTRACT: In this study, the effect of urbanization and environmental pollution on qualitative (structural) and quantitative changes of the Corylus avellana (hazel) pollen was investigated using scanning electron microscopy, Fourier Transform Infrared (FTIR) spectroscopy and curve-fitting analysis of amide I profile. The obtained spectroscopic results show significant variations in the fraction of proteins in the hazel pollen, which probably depend on various degrees of anthropopression. Our results suggest that alterations in the chemical composition of pollen, induced by urbanization and air pollutants, may intensify the allergenic potential and may cause the increase in the incidence of allergies in people. Mutations in nucleic acids are accompanied by a number of molecular changes leading to the formation of allergenic proteins. It seems that the type of habitat, where the pollen grew, affects the individual differentiation. Indeed, it was found that in the site exhibiting low pollution, the hazel pollen contain a lower amount of proteins than to the ones from a site with high anthropopression. Hence, FTIR spectroscopy and curve-fitting analysis of amide I profile can be successfully applied as tools for identifying quantitative and qualitative changes of proteins in hazel pollen. GRAPHICAL ABSTRACT: Anthropogenic factors such as air pollution and urbanization lead to changes in structure and chemical composition of hazel pollen. Fourier Transform Infrared spectroscopy (FTIR) and Gaussian analysis showed structural changes in hazel pollen collected from sites with different absorbance values of individual chemical functional groups and changes in the secondary structure of proteins of the pollen.

3.
Environ Sci Pollut Res Int ; 23(22): 23203-23214, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27604125

ABSTRACT

Nowadays, pollen allergy becomes an increasing problem for human population. Common mugwort (Artemisia vulgaris L.) is one of the major allergenic plants in Europe. In this study, the influence of air pollution caused by traffic on the structure and chemical composition of common mugwort pollen was investigated. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and curve-fitting analysis of amide I profile was applied to assess the morphological and structural changes of mugwort pollen grains collected from sites with different vehicle pollution levels. Microscopic observations support the conclusion, that the higher the car traffic, the smaller the pollen grains. The obtained results clearly show that air pollution had an impact on different maximum absorbance values of individual functional groups composing the chemical structure of pollen. Moreover, air pollution induced structural changes in macromolecules of mugwort pollen. In pollen collected from the unpolluted site, the content of sporopollenin (850 cm-1) was the highest, whereas polysaccharide concentration (1032 cm-1) was the lowest. Significant differences were observed in lipids. Pollen collected from the site with heavy traffic had the lowest content of lipids at 1709, 2071, and 2930 cm-1. The largest differences were observed in the spectra regions corresponding to proteins. In pollen collected from unpolluted site, the highest level of ß-sheet (1600 cm-1) and α-helix (1650 cm-1) was detected. The structural changes in proteins, observed in the second derivative of the FTIR spectrum and in the curve-fitting analysis of amide I profile, could be caused inter alia by air pollutants. Alterations in protein structure and in their content in the pollen may increase the sensitization and subsequent risk of allergy in predisposed people. The obtained results suggest that the changes in chemical composition of pollen may be a good indicator of air quality and that FTIR may be successfully applied in biomonitoring.


Subject(s)
Artemisia/chemistry , Artemisia/ultrastructure , Pollen/chemistry , Pollen/ultrastructure , Air Pollutants/analysis , Air Pollution/analysis , Allergens/chemistry , Allergens/ultrastructure , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
4.
Aerobiologia (Bologna) ; 31(2): 159-177, 2015.
Article in English | MEDLINE | ID: mdl-26346759

ABSTRACT

The aim of the study was to determine the characteristics of temporal and space-time autocorrelation of pollen counts of Alnus, Betula, and Corylus in the air of eight cities in Poland. Daily average pollen concentrations were monitored over 8 years (2001-2005 and 2009-2011) using Hirst-designed volumetric spore traps. The spatial and temporal coherence of data was investigated using the autocorrelation and cross-correlation functions. The calculation and mathematical modelling of 61 correlograms were performed for up to 25 days back. The study revealed an association between temporal variations in Alnus, Betula, and Corylus pollen counts in Poland and three main groups of factors such as: (1) air mass exchange after the passage of a single weather front (30-40 % of pollen count variation); (2) long-lasting factors (50-60 %); and (3) random factors, including diurnal variations and measurements errors (10 %). These results can help to improve the quality of forecasting models.

5.
Aerobiologia (Bologna) ; 30(4): 369-383, 2014.
Article in English | MEDLINE | ID: mdl-25382927

ABSTRACT

The characteristics of a pollen season, such as timing and magnitude, depend on a number of factors such as the biology of the plant and environmental conditions. The main aim of this study was to develop mathematical models that explain dynamics in atmospheric concentrations of pollen and fungal spores recorded in Rzeszów (SE Poland) in 2000-2002. Plant taxa with different characteristics in the timing, duration and curve of their pollen seasons, as well as several fungal taxa were selected for this analysis. Gaussian, gamma and logistic distribution models were examined, and their effectiveness in describing the occurrence of airborne pollen and fungal spores was compared. The Gaussian and differential logistic models were very good at describing pollen seasons with just one peak. These are typically for pollen types with just one dominant species in the flora and when the weather, in particular temperature, is stable during the pollination period. Based on s parameter of the Gaussian function, the dates of the main pollen season can be defined. In spite of the fact that seasonal curves are often characterised by positive skewness, the model based on the gamma distribution proved not to be very effective.

6.
Ann Agric Environ Med ; 6(1): 73-9, 1999.
Article in English | MEDLINE | ID: mdl-10384219

ABSTRACT

The aim of the research was to study spatial variations in the abundance and seasonal patterns of pollen fall. The investigation was carried out at three sites of different land use during two pollen seasons (1995 and 1996). The sites were located in an average town (Ostrowiec Sw.), in a village (Brzostowa) and in the open area near Ozarow. With the use of the gravimetric method, 55 taxa of sporomorphs were determined. There were small differences in seasonal incidence and in total pollen sums between the three sites. The differences in the abundance and percentage values of chosen pollen taxa (Populus, Fraxinus, Pinus, Poaceae) were bigger. Tree and shrub pollen dominated in pollen fall at the three sites. The preliminary results suggest that the pollen data differed more between the years than between the sites, which was probably due to meteorological patterns.


Subject(s)
Allergens/isolation & purification , Pollen/growth & development , Magnoliopsida , Poaceae , Poland , Seasons , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...