Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Res ; 39(1): 137-149, 2024.
Article in English | MEDLINE | ID: mdl-38223564

ABSTRACT

Conductive biohybrid cell-material systems have applications in bioelectronics and biorobotics. To date, conductive scaffolds are limited to those with low electrical conductivity or 2D sheets. Here, 3D biohybrid conductive systems are developed using fibroblasts or cardiomyocytes integrated with carbon nanotube (CNT) forests that are densified due to interactions with a gelatin coating. CNT forest scaffolds with a height range of 120-240 µm and an average electrical conductivity of 0.6 S/cm are developed and shown to be cytocompatible as evidenced from greater than 89% viability measured by live-dead assay on both cells on day 1. The cells spread on top and along the height of the CNT forest scaffolds. Finally, the scaffolds have no adverse effects on the expression of genes related to cardiomyocyte maturation and functionality, or fibroblast migration, adhesion, and spreading. The results show that the scaffold could be used in applications ranging from organ-on-a-chip systems to muscle actuators.

2.
J Mater Res ; 36(12): 2444-2455, 2021.
Article in English | MEDLINE | ID: mdl-33875904

ABSTRACT

Nanoindentation and electron microscopy have been used to examine the length-scale-dependent stress relaxation mechanisms in well-annealed, high-purity indium at a homologous temperature of 0.69. The experimental methods, analysis, and observations serve as a stepping stone in identifying the stress relaxation mechanisms enabling the formation and growth of metallic dendrites originating at the buried interface between a metallic anode and a solid electrolyte separator. Indium's load-displacement data are found to be very similar to that of high-purity lithium. Residual hardness impressions show two distinct surface morphologies. Based on these morphologies, the measured hardness, and the estimated pile-up volume, it is proposed that residual impressions exhibiting significant pile-up are the result of deformation dominated by interface diffusion. Alternatively, impressions with no significant pile-up are taken to be the result of shear-driven dislocation glide. An analytical model is presented to rationalize the pile-up profile using interface diffusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...