Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Planets ; 127(10): e2022JE007203, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36589717

ABSTRACT

To understand the evolving martian water cycle, a global perspective of the combined vertical and horizontal distribution of water is needed in relation to supersaturation and water loss and how it varies spatially and temporally. The global vertical water vapor distribution is investigated through an analysis that unifies water, temperature and dust retrievals from several instruments on multiple spacecraft throughout Mars Year (MY) 34 with a global circulation model. During the dusty season of MY 34, northern polar latitudes are largely absent of water vapor below 20 km with variations above this altitude due to transport from mid-latitudes during a global dust storm, the downwelling branch of circulation during perihelion season and the intense MY 34 southern summer regional dust storm. Evidence is found of supersaturated water vapor breaking into the northern winter polar vortex. Supersaturation above around 60 km is found for most of the time period, with lower altitudes showing more diurnal variation in the saturation state of the atmosphere. Discrete layers of supersaturated water are found across all latitudes. The global dust storm and southern summer regional dust storm forced water vapor at all latitudes in a supersaturated state to 60-90 km where it is more likely to escape from the atmosphere. The reanalysis data set provides a constrained global perspective of the water cycle in which to investigate the horizontal and vertical transport of water throughout the atmosphere, of critical importance to understand how water is exchanged between different reservoirs and escapes the atmosphere.

2.
Nature ; 436(7047): 44-8, 2005 Jul 07.
Article in English | MEDLINE | ID: mdl-16001058

ABSTRACT

Comprehensive analyses of remote sensing data during the three-year effort to select the Mars Exploration Rover landing sites at Gusev crater and at Meridiani Planum correctly predicted the atmospheric density profile during entry and descent and the safe and trafficable surfaces explored by the two rovers. The Gusev crater site was correctly predicted to be a low-relief surface that was less rocky than the Viking landing sites but comparably dusty. A dark, low-albedo, flat plain composed of basaltic sand and haematite with very few rocks was expected and found at Meridiani Planum. These results argue that future efforts to select safe landing sites based on existing and acquired remote sensing data will be successful. In contrast, geological interpretations of the sites based on remote sensing data were less certain and less successful, which emphasizes the inherent ambiguities in understanding surface geology from remotely sensed data and the uncertainty in predicting exactly what materials will be available for study at a landing site.

3.
Geophys Res Lett ; 26(24): 3653-6, 1999 Dec 15.
Article in English | MEDLINE | ID: mdl-11543401

ABSTRACT

Using a new measurement of the D/H fractionation efficiency and new estimates of the water loss, we calculate that Mars has the equivalent of a approximately 9 m global water layer in a reservoir that exchanges with the atmosphere. The measured D/H enrichment is about 5 times the terrestrial value, but without exchange, the atmosphere converges on an enrichment of 50 in about 0.5 Ma. Due to the large buffering reservoir and the rapid loss rate (10(-3) pr-micrometers yr-1), the small atmospheric reservoir, averaging 10 pr-micrometers, is unlikely to be in continuous isotopic equilibrium with the full 9 m exchangeable reservoir. Instead, it presumably equilibrates during periods of high obliquity; the atmospheric D/H ratio is expected to be enriched in between such periods. If isotopic exchange with a small (4 mm global layer) reservoir occurs under current conditions, it possible for the atmospheric D/H ratio to be within 10% of its long term equilibrium.


Subject(s)
Atmosphere/chemistry , Deuterium/analysis , Hydrogen/analysis , Mars , Water/chemistry , Chemical Fractionation , Evolution, Planetary , Exobiology , Extraterrestrial Environment , Ice , Models, Chemical , Water/analysis
5.
Science ; 274(5294): 1932b-3b, 1996 Dec 13.
Article in English | MEDLINE | ID: mdl-17843018
6.
Science ; 268(5211): 697-9, 1995 May 05.
Article in English | MEDLINE | ID: mdl-7732377

ABSTRACT

Because Mars does not have a strong intrinsic magnetic field, the atmosphere is eroded by interactions with the solar wind. Early solar-system conditions enhanced the sputtering loss. It is calculated that approximately 3 bars of carbon dioxide (CO2) have been sputtered over the last 3.5 billion years. This significant increase over the previous estimate by Luhmann et al. of approximately 0.14 bar of CO2 is the result of the development of a more complete model. The model also predicts slightly greater loss of water--approximately 80 meters instead of the approximately 50 meters predicted by Luhmann et al. Because estimates of CO2 on early Mars range from 0.5 to 5 bars, the 0.14-bar estimate is insignificant but the approximately 3-bar estimate will have a large effect on our understanding of the planet's evolution.


Subject(s)
Extraterrestrial Environment , Mars , Atmosphere , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...