Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Icarus ; 3412020 May 01.
Article in English | MEDLINE | ID: mdl-32921803

ABSTRACT

Gravity waves in Mars's atmosphere strongly affect the general circulation as well as middle atmospheric cloud formation, but the climatology and sources of gravity waves in the lower atmosphere remain poorly understood. At Earth, the statistical variance in satellite observations of thermal emission above the instrumental noise floor has been used to enable measurement of gravity wave activity at a global scale. Here is presented an analysis of variance in calibrated radiance at 15.4 µm (635-665 cm-1) from off-nadir and nadir observations by the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter (MRO); a major expansion in the observational data available for validating models of Martian gravity wave activity. These observations are sensitive to gravity waves at 20-30 km altitude with wavelength properties (λ h =10-100 km, λ z > 5 km) that make them likely to affect the dynamics of the middle and upper atmosphere. We find that: (1) strong, moderately intermittent gravity wave activity is scattered over the tropical volcanoes and throughout the middle to high latitudes of both hemispheres during fall and winter, (2) gravity wave activity noticeably departs from climatology during regional and global dust storms; and (3) strong, intermittent variance is observed at night in parts of the southern tropics during its fall/winter, but frequent CO2 ice clouds prevents unambiguous attribution to GW activity. The spatial distribution of wave activity is consistent with topographic sources being dominant, but contributions from boundary layer convection and other convective processes are possible.

2.
Geophys Res Lett ; 47(9): e2019GL083936, 2020 May 16.
Article in English | MEDLINE | ID: mdl-32713983

ABSTRACT

The impact of Mars's 2018 Global Dust Storm (GDS) on surface and near-surface air temperatures was investigated using an assimilation of Mars Climate Sounder observations. Rather than simply resulting in cooling everywhere from solar absorption (average surface radiative flux fell 26 W/m2), the globally averaged result was a 0.9-K surface warming. These diurnally averaged surface temperature changes had a novel, highly nonuniform spatial structure, with up to 16-K cooling/19-K warming. Net warming occurred in low thermal inertia regions, where rapid nighttime radiative cooling was compensated by increased longwave emission and scattering. This caused strong nightside warming, outweighing dayside cooling. The reduced surface-air temperature gradient closely coupled surface and air temperatures, even causing local dayside air warming. Results show good agreement with Mars Climate Sounder surface temperature retrievals. Comparisons with the 2001 GDS and free-running simulations show that GDS spatial structure is crucial in determining global surface temperature effects.

3.
J Atmos Sci ; 76(11): 3299-3326, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32848258

ABSTRACT

Deep convection, as used in meteorology, refers to the rapid ascent of air parcels in the Earth's troposphere driven by the buoyancy generated by phase change in water. Deep convection undergirds some of the Earth's most important and violent weather phenomena and is responsible for many aspects of the observed distribution of energy, momentum, and constituents (particularly water) in the Earth's atmosphere. Deep convection driven by buoyancy generated by the radiative heating of atmospheric dust may be similarly important in the atmosphere of Mars but lacks a systematic description. Here we propose a comprehensive framework for this phenomenon of dusty deep convection (DDC) that is supported by energetic calculations and observations of the vertical dust distribution and exemplary dusty deep convective structures within local, regional, and global dust storm activity. In this framework, DDC is distinct from a spectrum of weaker dusty convective activity because DDC originates from pre-existing or concurrently forming mesoscale circulations that generate high surface dust fluxes, oppose large-scale horizontal advective-diffusive processes, and are thus able to maintain higher dust concentrations than typically simulated. DDC takes two distinctive forms. Mesoscale circulations that form near Mars's highest volcanoes in dust storms of all scales can transport dust to the base of the upper atmosphere in as little as two hours. In the second distinctive form, mesoscale circulations at low elevations within regional and global dust storm activity generate freely convecting streamers of dust that are sheared into the middle atmosphere over the diurnal cycle.

4.
J Geophys Res Planets ; 124(11): 2863-2892, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32908808

ABSTRACT

Dusty convection, convective activity powered by radiative heating of dust, is a ubiquitous phenomenon in Mars's atmosphere but is especially deep (that is, impactful on the middle atmosphere) and widespread during planet-encircling dust events (PEDE) that occur every few Mars Years (MY). Yet the relative roles of dusty deep convection and global dynamics, such as the principal meridional overturning cell (PMOC) and the radiative tides, in dust storm development and the vertical transport of dust and water are still unclear. Here, observations from the Mars Climate Sounder on board Mars Reconnaissance Orbiter (MRO-MCS) are used to study dusty deep convection and its impact on middle atmospheric water content during the MY 34 PEDE (commenced June 2018). Additional context is provided by MRO-MCS observations of the MY 28 PEDE (commenced June 2007). This investigation establishes that a few, localized centers of dusty deep convection in the tropics formed in the initial phases of both PEDE simultaneously with a substantial increase in middle atmospheric water content. The growth phase of the MY 34 PEDE was defined by episodic outbreaks of deep convection along the Acidalia and Utopia storm tracks as opposed to less episodic, more longitudinally distributed convective activity during the MY 28 PEDE. The most intense convection during both PEDE was observed in southern/eastern Tharsis, where MRO-MCS observed multiple instances of deep convective clouds transporting dust to altitudes of 70-90 km. These results suggest that Martian PEDE typically contain multiple convectively active mesoscale weather systems.

5.
Nat Commun ; 6: 10003, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26600077

ABSTRACT

The climate of Mars likely evolved from a warmer, wetter early state to the cold, arid current state. However, no solutions for this evolution have previously been found to satisfy the observed geological features and isotopic measurements of the atmosphere. Here we show that a family of solutions exist, invoking no missing reservoirs or loss processes. Escape of carbon via CO photodissociation and sputtering enriches heavy carbon ((13)C) in the Martian atmosphere, partially compensated by moderate carbonate precipitation. The current atmospheric (13)C/(12)C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure <1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bar. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time.

SELECTION OF CITATIONS
SEARCH DETAIL
...