Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
bioRxiv ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38854018

ABSTRACT

Targeted recruitment of E3 ubiquitin ligases to degrade traditionally undruggable proteins is a disruptive paradigm for developing new therapeutics. Two salient limitations are that <2% of the ~600 E3 ligases in the human genome have been exploited to produce proteolysis targeting chimeras (PROTACs), and the efficacy of the approach has not been demonstrated for a vital class of complex multi-subunit membrane proteins- ion channels. NEDD4-1 and NEDD4-2 are physiological regulators of myriad ion channels, and belong to the 28-member HECT (homologous to E6AP C-terminus) family of E3 ligases with widespread roles in cell/developmental biology and diverse diseases including various cancers, immunological and neurological disorders, and chronic pain. The potential efficacy of HECT E3 ligases for targeted protein degradation is unexplored, constrained by a lack of appropriate binders, and uncertain due to their complex regulation by layered intra-molecular and posttranslational mechanisms. Here, we identified a nanobody that binds with high affinity and specificity to a unique site on the N-lobe of the NEDD4-2 HECT domain at a location physically separate from sites critical for catalysis- the E2 binding site, the catalytic cysteine, and the ubiquitin exosite- as revealed by a 3.1 Å cryo-electron microscopy reconstruction. Recruiting endogenous NEDD4-2 to diverse ion channel proteins (KCNQ1, ENaC, and CaV2.2) using a divalent (DiVa) nanobody format strongly reduced their functional expression with minimal off-target effects as assessed by global proteomics, compared to simple NEDD4-2 overexpression. The results establish utility of a HECT E3 ligase for targeted protein downregulation, validate a class of complex multi-subunit membrane proteins as susceptible to this modality, and introduce endogenous E3 ligase recruitment with DiVa nanobodies as a general method to generate novel genetically-encoded ion channel inhibitors.

3.
Elife ; 122023 08 31.
Article in English | MEDLINE | ID: mdl-37650513

ABSTRACT

The slow delayed rectifier potassium current, IKs, conducted through pore-forming Q1 and auxiliary E1 ion channel complexes is important for human cardiac action potential repolarization. During exercise or fright, IKs is up-regulated by protein kinase A (PKA)-mediated Q1 phosphorylation to maintain heart rhythm and optimum cardiac performance. Sympathetic up-regulation of IKs requires recruitment of PKA holoenzyme (two regulatory - RI or RII - and two catalytic Cα subunits) to Q1 C-terminus by an A kinase anchoring protein (AKAP9). Mutations in Q1 or AKAP9 that abolish their functional interaction result in long QT syndrome type 1 and 11, respectively, which increases the risk of sudden cardiac death during exercise. Here, we investigated the utility of a targeted protein phosphorylation (TPP) approach to reconstitute PKA regulation of IKs in the absence of AKAP9. Targeted recruitment of endogenous Cα to E1-YFP using a GFP/YFP nanobody (nano) fused to RIIα enabled acute cAMP-mediated enhancement of IKs, reconstituting physiological regulation of the channel complex. By contrast, nano-mediated tethering of RIIα or Cα to Q1-YFP constitutively inhibited IKs by retaining the channel intracellularly in the endoplasmic reticulum and Golgi. Proteomic analysis revealed that distinct phosphorylation sites are modified by Cα targeted to Q1-YFP compared to free Cα. Thus, functional outcomes of synthetically recruited PKA on IKs regulation is critically dependent on the site of recruitment within the channel complex. The results reveal insights into divergent regulation of IKs by phosphorylation across different spatial and time scales, and suggest a TPP approach to develop new drugs to prevent exercise-induced sudden cardiac death.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , KCNQ1 Potassium Channel , Humans , Proteomics , Action Potentials , Death, Sudden, Cardiac
4.
J Neurophysiol ; 130(3): 475-496, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37465897

ABSTRACT

As improved recording technologies have created new opportunities for neurophysiological investigation, emphasis has shifted from individual neurons to multiple populations that form circuits, and it has become important to provide evidence of cross-population coordinated activity. We review various methods for doing so, placing them in six major categories while avoiding technical descriptions and instead focusing on high-level motivations and concerns. Our aim is to indicate what the methods can achieve and the circumstances under which they are likely to succeed. Toward this end, we include a discussion of four cross-cutting issues: the definition of neural populations, trial-to-trial variability and Poisson-like noise, time-varying dynamics, and causality.


Subject(s)
Neurons , Neurons/physiology
6.
J Comput Neurosci ; 51(2): 263-282, 2023 05.
Article in English | MEDLINE | ID: mdl-37140691

ABSTRACT

To understand single neuron computation, it is necessary to know how specific physiological parameters affect neural spiking patterns that emerge in response to specific stimuli. Here we present a computational pipeline combining biophysical and statistical models that provides a link between variation in functional ion channel expression and changes in single neuron stimulus encoding. More specifically, we create a mapping from biophysical model parameters to stimulus encoding statistical model parameters. Biophysical models provide mechanistic insight, whereas statistical models can identify associations between spiking patterns and the stimuli they encode. We used public biophysical models of two morphologically and functionally distinct projection neuron cell types: mitral cells (MCs) of the main olfactory bulb, and layer V cortical pyramidal cells (PCs). We first simulated sequences of action potentials according to certain stimuli while scaling individual ion channel conductances. We then fitted point process generalized linear models (PP-GLMs), and we constructed a mapping between the parameters in the two types of models. This framework lets us detect effects on stimulus encoding of changing an ion channel conductance. The computational pipeline combines models across scales and can be applied as a screen of channels, in any cell type of interest, to identify ways that channel properties influence single neuron computation.


Subject(s)
Models, Neurological , Neurons , Action Potentials/physiology , Neurons/physiology , Ion Channels/physiology , Linear Models
7.
Can J Stat ; 51(3): 824-851, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38974813

ABSTRACT

Multiple oscillating time series are typically analyzed in the frequency domain, where coherence is usually said to represent the magnitude of the correlation between two signals at a particular frequency. The correlation being referenced is complex-valued and is similar to the real-valued Pearson correlation in some ways but not others. We discuss the dependence among oscillating series in the context of the multivariate complex normal distribution, which plays a role for vectors of complex random variables analogous to the usual multivariate normal distribution for vectors of real-valued random variables. We emphasize special cases that are valuable for the neural data we are interested in and provide new variations on existing results. We then introduce a complex latent variable model for narrowly band-pass-filtered signals at some frequency, and show that the resulting maximum likelihood estimate produces a latent coherence that is equivalent to the magnitude of the complex canonical correlation at the given frequency. We also derive an equivalence between partial coherence and the magnitude of complex partial correlation, at a given frequency. Our theoretical framework leads to interpretable results for an interesting multivariate dataset from the Allen Institute for Brain Science.


Les séries temporelles à oscillations multiples sont généralement étudiées dans le domaine fréquentiel, où la cohérence est souvent considérée comme l'amplitude de la corrélation entre deux signaux à une fréquence spécifique. Cette corrélation est à valeurs complexes et présente des similitudes avec la corrélation de Pearson pour les valeurs réelles, tout en présentant des différences distinctes. Dans cette étude, les auteurs explorent la dépendance entre les séries oscillantes en utilisant la distribution normale complexe multivariée. Cette distribution est l'équivalent de la distribution normale multivariée classique, mais adaptée aux vecteurs de variables aléatoires complexes plutôt qu'aux vecteurs de variables aléatoires réelles. Les auteurs mettent l'accent sur des cas spécifiques qui revêtent une importance particulière pour les données neuronales qui les intéressent, tout en proposant de nouvelles approches et des variations des résultats existants. Ils introduisent un modèle de variables latentes complexes pour les signaux filtrés en bande passante étroite à une fréquence donnée. Ils démontrent ensuite que l'estimation du maximum de vraisemblance dans ce modèle produit une cohérence latente équivalente à l'amplitude de la corrélation canonique complexe à la fréquence spécifiée. Ils établissent également une équivalence entre la cohérence partielle et l'amplitude de la corrélation partielle complexe, toujours à une fréquence donnée. Leur approche théorique conduit à des résultats interprétables pour un ensemble de données multivariées intéressant provenant de l'Allen Institute for Brain Science.

8.
Front Physiol ; 13: 902224, 2022.
Article in English | MEDLINE | ID: mdl-36505078

ABSTRACT

The congenital Long QT Syndrome (LQTS) is an inherited disorder in which cardiac ventricular repolarization is delayed and predisposes patients to cardiac arrhythmias and sudden cardiac death. LQT1 and LQT5 are LQTS variants caused by mutations in KCNQ1 or KCNE1 genes respectively. KCNQ1 and KCNE1 co-assemble to form critical IKS potassium channels. Beta-blockers are the standard of care for the treatment of LQT1, however, doing so based on mechanisms other than correcting the loss-of-function of K+ channels. ML277 and R-L3 are compounds that enhance IKS channels and slow channel deactivation in a manner that is dependent on the stoichiometry of KCNE1 subunits in the assembled channels. In this paper, we used expression of IKS channels in Chinese hamster ovary (CHO) cells and Xenopus oocytes to study the potential of these two drugs (ML277 and R-L3) for the rescue of LQT1 and LQT5 mutant channels. We focused on the LQT1 mutation KCNQ1-S546L, and two LQT5 mutations, KCNE1-L51H and KCNE1-G52R. We found ML277 and R-L3 potentiated homozygote LQTS mutations in the IKS complexes-KCNE1-G52R and KCNE1-L51H and in heterogeneous IKS channel complexes which mimic heterogeneous expression of mutations in patients. ML277 and R-L3 increased the mutant IKS current amplitude and slowed current deactivation, but not in wild type (WT) IKS. We obtained similar results in the LQT1 mutant (KCNQ1 S546L/KCNE1) with ML277 and R-L3. ML277 and R-L3 had a similar effect on the LQT1 and LQT5 mutants, however, ML277 was more effective than R-L3 in this modulation. Importantly we found that not all LQT5 mutants expressed with KCNQ1 resulted in channels that are potentiated by these drugs as the KCNE1 mutant D76N inhibited drug action when expressed with KCNQ1. Thus, our work shows that by directly studying the treatment of LQT1 and LQT5 mutations with ML277 and R-L3, we will understand the potential utility of these activators as options in specific LQTS therapeutics.

9.
J Neurophysiol ; 128(6): 1578-1592, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36321709

ABSTRACT

For many perceptual and behavioral tasks, a prominent feature of neural spike trains involves high firing rates across relatively short intervals of time. We call these events "population bursts." Because during a population burst information is, presumably, transmitted from one part of the brain to another, burst timing should reveal activity related to the flow of information across neural circuits. We developed a statistical method (based on a point process model) of determining, accurately, the time of the maximum (peak) population firing rate on a trial-by-trial basis and used it to characterize burst propagation across areas. We then examined the tendency of peak firing rates in distinct brain areas to shift earlier or later in time, together, across repeated trials, and found this trial-to-trial coupling of peak times to be a sensitive indicator of interaction across populations. In the data we examined, from the Allen Brain Observatory, we found many very strong correlations (95% confidence intervals above 0.75) in cases where standard methods were unable to demonstrate cross-area correlation. The statistical model introduced cross-area covariation only through population-level trial-dependent time shifts and gain constants (values of which were learned from the data), yet it provided very good fits to data histograms, including histograms of spike count correlations within and across visual areas. Our results demonstrate the utility of carefully assessing timing and propagation, across brain regions, of transient bursts in neural population activity, based on multiple spike train recordings.NEW & NOTEWORTHY We developed a novel statistical method for identifying coordinated propagation of activity across populations of spiking neurons, with high temporal accuracy. Using simultaneous recordings from three visual areas we document precise timing relationships on a trial-by-trial basis, and we show how previously existing techniques can fail to discover coordinated activity in cases where the new approach finds very strong cross-area correlation.


Subject(s)
Brain
10.
Biomolecules ; 12(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36291551

ABSTRACT

Pulmonary arterial hypertension (PAH) is a devastating disease with high morbidity and mortality. Deleterious remodeling in the pulmonary arterial system leads to irreversible arterial constriction and elevated pulmonary arterial pressures, right heart failure, and eventually death. The difficulty in treating PAH stems in part from the complex nature of disease pathogenesis, with several signaling compounds known to be involved (e.g., endothelin-1, prostacyclins) which are indeed targets of PAH therapy. Over the last decade, potassium channelopathies were established as novel causes of PAH. More specifically, loss-of-function mutations in the KCNK3 gene that encodes the two-pore-domain potassium channel KCNK3 (or TASK-1) and loss-of-function mutations in the ABCC8 gene that encodes a key subunit, SUR1, of the ATP-sensitive potassium channel (KATP) were established as the first two potassium channelopathies in human cohorts with pulmonary arterial hypertension. Moreover, voltage-gated potassium channels (Kv) represent a third family of potassium channels with genetic changes observed in association with PAH. While other ion channel genes have since been reported in association with PAH, this review focuses on KCNK3, KATP, and Kv potassium channels as promising therapeutic targets in PAH, with recent experimental pharmacologic discoveries significantly advancing the field.


Subject(s)
Channelopathies , Hypertension, Pulmonary , Potassium Channels, Tandem Pore Domain , Potassium Channels, Voltage-Gated , Pulmonary Arterial Hypertension , Humans , Potassium Channels, Tandem Pore Domain/genetics , Channelopathies/drug therapy , Channelopathies/genetics , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Endothelin-1 , Nerve Tissue Proteins/metabolism , Familial Primary Pulmonary Hypertension/genetics , Prostaglandins I , Potassium , KATP Channels/genetics
11.
Front Physiol ; 13: 903050, 2022.
Article in English | MEDLINE | ID: mdl-35957984

ABSTRACT

ML277 and R-L3 are two small-molecule activators of KCNQ1, the pore-forming subunit of the slowly activating potassium channel IKs. KCNQ1 loss-of-function mutations prolong cardiac action potential duration and are associated with long QT syndrome, which predispose patients to lethal ventricular arrhythmia. ML277 and R-L3 enhance KCNQ1 current amplitude and slow deactivation. However, the presence of KCNE1, an auxiliary subunit of IKs channels, renders the channel insensitive to both activators. We found that ML277 effects are dependent on several residues in the KCNQ1 pore domain. Some of these residues are also necessary for R-L3 effects. These residues form a putative hydrophobic pocket located between two adjacent KCNQ1 subunits, where KCNE1 subunits are thought to dwell, thus providing an explanation for how KCNE1 renders the IKs channel insensitive to these activators. Our experiments showed that the effect of R-L3 on voltage sensor movement during channel deactivation was much more prominent than that of ML277. Simulations using a KCNQ1 kinetic model showed that the effects of ML277 and R-L3 could be reproduced through two different effects on channel gating: ML277 enhances KCNQ1 channel function through a pore-dependent and voltage sensor-independent mechanism, while R-L3 affects both channel pore and voltage sensor.

12.
Channels (Austin) ; 16(1): 173-184, 2022 12.
Article in English | MEDLINE | ID: mdl-35949058

ABSTRACT

The congenital long QT syndrome (LQTS), one of the most common cardiac channelopathies, is characterized by delayed ventricular repolarization underlying prolongation of the QT interval of the surface electrocardiogram. LQTS is caused by mutations in genes coding for cardiac ion channels or ion channel-associated proteins. The major therapeutic approach to LQTS management is beta blocker therapy which has been shown to be effective in treatment of LQTS variants caused by mutations in K+ channels. However, this approach has been questioned in the treatment of patients identified as LQTS variant 3(LQT3) patients who carry mutations in SCN5A, the gene coding for the principal cardiac Na+ channel. LQT3 mutations are gain of function mutations that disrupt spontaneous Na+ channel inactivation and promote persistent or late Na+ channel current (INaL) that delays repolarization and underlies QT prolongation. Clinical investigation of patients with the two most common LQT3 mutations, the ΔKPQ and the E1784K mutations, found beta blocker treatment a useful therapeutic approach for managing arrhythmias in this patient population. However, there is little experimental data that reveals the mechanisms underlying these antiarrhythmic actions. Here, we have investigated the effects of the beta blocker propranolol on INaL expressed by ΔKPQ and E1784K channels in induced pluripotent stem cells derived from patients carrying these mutations. Our results indicate that propranolol preferentially inhibits INaL expressed by these channels suggesting that the protective effects of propranolol in treating LQT3 patients is due in part to modulation of INaL.


Subject(s)
Long QT Syndrome , Pluripotent Stem Cells , Arrhythmias, Cardiac/genetics , Humans , Long QT Syndrome/drug therapy , Long QT Syndrome/genetics , Muscle Cells/metabolism , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , Pluripotent Stem Cells/metabolism , Propranolol/pharmacology , Propranolol/therapeutic use , Sodium Channels
13.
PLoS Comput Biol ; 17(11): e1009601, 2021 11.
Article in English | MEDLINE | ID: mdl-34788286

ABSTRACT

Because local field potentials (LFPs) arise from multiple sources in different spatial locations, they do not easily reveal coordinated activity across neural populations on a trial-to-trial basis. As we show here, however, once disparate source signals are decoupled, their trial-to-trial fluctuations become more accessible, and cross-population correlations become more apparent. To decouple sources we introduce a general framework for estimation of current source densities (CSDs). In this framework, the set of LFPs result from noise being added to the transform of the CSD by a biophysical forward model, while the CSD is considered to be the sum of a zero-mean, stationary, spatiotemporal Gaussian process, having fast and slow components, and a mean function, which is the sum of multiple time-varying functions distributed across space, each varying across trials. We derived biophysical forward models relevant to the data we analyzed. In simulation studies this approach improved identification of source signals compared to existing CSD estimation methods. Using data recorded from primate auditory cortex, we analyzed trial-to-trial fluctuations in both steady-state and task-evoked signals. We found cortical layer-specific phase coupling between two probes and showed that the same analysis applied directly to LFPs did not recover these patterns. We also found task-evoked CSDs to be correlated across probes, at specific cortical depths. Using data from Neuropixels probes in mouse visual areas, we again found evidence for depth-specific phase coupling of primary visual cortex and lateromedial area based on the CSDs.


Subject(s)
Models, Neurological , Primary Visual Cortex/physiology , Animals , Computer Simulation
14.
J Undergrad Neurosci Educ ; 19(2): A185-A191, 2021.
Article in English | MEDLINE | ID: mdl-34552436

ABSTRACT

The 2019 Society for Neuroscience Professional Development Workshop on Teaching reviewed current tools, approaches, and examples for teaching computation in neuroscience. Robert Kass described the statistical foundations that students need to properly analyze data. Pascal Wallisch compared MATLAB and Python as programming languages for teaching students. Adrienne Fairhall discussed computational methods, training opportunities, and curricular considerations. Walt Babiec provided a view from the trenches on practical aspects of teaching computational neuroscience. Mathew Abrams concluded the session with an overview of resources for teaching and learning computational modeling in neuroscience.

15.
Bioorg Med Chem Lett ; 46: 128162, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34062251

ABSTRACT

In the United States, approximately one million individuals are hospitalized every year for arrhythmias, making arrhythmias one of the top causes of healthcare expenditures. Mexiletine is currently used as an antiarrhythmic drug but has limitations. The purpose of this work was to use normal and Long QT syndrome Type 3 (LQTS3) patient-derived human induced pluripotent stem cell (iPSC)-derived cardiomyocytes to identify an analog of mexiletine with superior drug-like properties. Compared to racemic mexiletine, medicinal chemistry optimization of substituted racemic pyridyl phenyl mexiletine analogs resulted in a more potent sodium channel inhibitor with greater selectivity for the sodium over the potassium channel and for late over peak sodium current.


Subject(s)
Cardiac Conduction System Disease/pathology , Induced Pluripotent Stem Cells/chemistry , Long QT Syndrome/pathology , Mexiletine/pharmacology , Myocytes, Cardiac/pathology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Pyridines/pharmacology , Dose-Response Relationship, Drug , Humans , Mexiletine/chemistry , Molecular Structure , Pyridines/chemistry , Structure-Activity Relationship
16.
J Med Chem ; 64(9): 5384-5403, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33942619

ABSTRACT

Ventricular cardiac arrhythmia (VA) arises in acquired or congenital heart disease. Long QT syndrome type-3 (LQT3) is a congenital form of VA caused by cardiac sodium channel (INaL) SCN5A mutations that prolongs cardiac action potential (AP) and enhances INaL current. Mexiletine inhibits INaL and shortens the QT interval in LQT3 patients. Above therapeutic doses, mexiletine prolongs the cardiac AP. We explored structure-activity relationships (SAR) for AP shortening and prolongation using dynamic medicinal chemistry and AP kinetics in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using patient-derived LQT3 and healthy hiPSC-CMs, we resolved distinct SAR for AP shortening and prolongation effects in mexiletine analogues and synthesized new analogues with enhanced potency and selectivity for INaL. This resulted in compounds with decreased AP prolongation effects, increased metabolic stability, increased INaL selectivity, and decreased avidity for the potassium channel. This study highlights using hiPSC-CMs to guide medicinal chemistry and "drug development in a dish".


Subject(s)
Anti-Arrhythmia Agents/chemistry , Cardiac Conduction System Disease/pathology , Long QT Syndrome/pathology , Mexiletine/analogs & derivatives , Action Potentials/drug effects , Animals , Anti-Arrhythmia Agents/pharmacology , Behavior, Animal/drug effects , Cardiac Conduction System Disease/metabolism , Cells, Cultured , Drug Design , Drug Stability , Half-Life , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Long QT Syndrome/metabolism , Male , Mexiletine/pharmacology , Mice , Mice, Inbred BALB C , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
17.
Cell Stem Cell ; 27(5): 813-821.e6, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32931730

ABSTRACT

Modeling cardiac disorders with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes is a new paradigm for preclinical testing of candidate therapeutics. However, disease-relevant physiological assays can be complex, and the use of hiPSC-cardiomyocyte models of congenital disease phenotypes for guiding large-scale screening and medicinal chemistry have not been shown. We report chemical refinement of the antiarrhythmic drug mexiletine via high-throughput screening of hiPSC-CMs derived from patients with the cardiac rhythm disorder long QT syndrome 3 (LQT3) carrying SCN5A sodium channel variants. Using iterative cycles of medicinal chemistry synthesis and testing, we identified drug analogs with increased potency and selectivity for inhibiting late sodium current across a panel of 7 LQT3 sodium channel variants and suppressing arrhythmic activity across multiple genetic and pharmacological hiPSC-CM models of LQT3 with diverse backgrounds. These mexiletine analogs can be exploited as mechanistic probes and for clinical development.


Subject(s)
Induced Pluripotent Stem Cells , Action Potentials , Anti-Arrhythmia Agents/pharmacology , Humans , Myocytes, Cardiac , Patch-Clamp Techniques
18.
Adv Neural Inf Process Syst ; 33: 16446-16456, 2020 Dec.
Article in English | MEDLINE | ID: mdl-36605231

ABSTRACT

High-dimensional neural recordings across multiple brain regions can be used to establish functional connectivity with good spatial and temporal resolution. We designed and implemented a novel method, Latent Dynamic Factor Analysis of High-dimensional time series (LDFA-H), which combines (a) a new approach to estimating the covariance structure among high-dimensional time series (for the observed variables) and (b) a new extension of probabilistic CCA to dynamic time series (for the latent variables). Our interest is in the cross-correlations among the latent variables which, in neural recordings, may capture the flow of information from one brain region to another. Simulations show that LDFA-H outperforms existing methods in the sense that it captures target factors even when within-region correlation due to noise dominates cross-region correlation. We applied our method to local field potential (LFP) recordings from 192 electrodes in Prefrontal Cortex (PFC) and visual area V4 during a memory-guided saccade task. The results capture time-varying lead-lag dependencies between PFC and V4, and display the associated spatial distribution of the signals.

19.
Ann Appl Stat ; 14(2): 635-660, 2020 Jun.
Article in English | MEDLINE | ID: mdl-36605359

ABSTRACT

Angular measurements are often modeled as circular random variables, where there are natural circular analogues of moments, including correlation. Because a product of circles is a torus, a d-dimensional vector of circular random variables lies on a d-dimensional torus. For such vectors we present here a class of graphical models, which we call torus graphs, based on the full exponential family with pairwise interactions. The topological distinction between a torus and Euclidean space has several important consequences. Our development was motivated by the problem of identifying phase coupling among oscillatory signals recorded from multiple electrodes in the brain: oscillatory phases across electrodes might tend to advance or recede together, indicating coordination across brain areas. The data analyzed here consisted of 24 phase angles measured repeatedly across 840 experimental trials (replications) during a memory task, where the electrodes were in 4 distinct brain regions, all known to be active while memories are being stored or retrieved. In realistic numerical simulations, we found that a standard pairwise assessment, known as phase locking value, is unable to describe multivariate phase interactions, but that torus graphs can accurately identify conditional associations. Torus graphs generalize several more restrictive approaches that have appeared in various scientific literatures, and produced intuitive results in the data we analyzed. Torus graphs thus unify multivariate analysis of circular data and present fertile territory for future research.

20.
Biophys J ; 117(7): 1352-1363, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31521331

ABSTRACT

Nav1.5 inactivation is necessary for healthy conduction of the cardiac action potential. Genetic mutations of Nav1.5 perturb inactivation and cause potentially fatal arrhythmias associated with long QT syndrome type 3. The exact structural dynamics of the inactivation complex is unknown. To sense inactivation gate conformational change in live mammalian cells, we incorporated the solvatochromic fluorescent noncanonical amino acid 3-((6-acetylnaphthalen-2-yl)amino)-2-aminopropanoic acid (ANAP) into single sites in the Nav1.5 inactivation gate. ANAP was incorporated in full-length and C-terminally truncated Nav1.5 channels using mammalian cell synthetase-tRNA technology. ANAP-incorporated channels were expressed in mammalian cells, and they exhibited pathophysiological function. A spectral imaging potassium depolarization assay was designed to detect ANAP emission shifts associated with Nav1.5 conformational change. Site-specific intracellular ANAP incorporation affords live-cell imaging and detection of Nav1.5 inactivation gate conformational change in mammalian cells.


Subject(s)
Amino Acids/metabolism , Mammals/metabolism , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Amino Acids/chemistry , Animals , Fluorescence , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Ion Channel Gating , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...