ABSTRACT
Falcipain-2 is a cysteine protease of the malaria parasite Plasmodium falciparum that plays a key role in the hydrolysis of hemoglobin, a process that is required by intraerythrocytic parasites to obtain amino acids. In this work we show that the polysulfonated napthylurea suramin is capable of binding to falcipain-2, inhibiting its catalytic activity at nanomolar concentrations against both synthetic substrates and the natural substrate hemoglobin. Kinetic measurements suggest that the inhibition occurs through an noncompetitive allosteric mechanism, eliciting substrate inhibition. Smaller suramin analogues and those with substituted methyl groups also showed inhibition within the nanomolar range. Our results identify the suramin family as a potential starting point for the design of falcipain-2 inhibitor antimalarials that act through a novel inhibition mechanism.
Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Cysteine Endopeptidases/metabolism , Plasmodium falciparum/enzymology , Suramin/analogs & derivatives , Suramin/pharmacology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Humans , Malaria, Falciparum/drug therapy , Molecular Docking Simulation , Plasmodium falciparum/drug effectsABSTRACT
Thrombin is a serine protease that plays fundamental roles in hemostasis. We have recently elucidated the crystal structure of thrombin in complex with suramin, evidencing the interaction through the anion binding exosite 2. Here, we show that the activity of thrombin toward natural and synthetic substrates is enhanced by suramin as well as analogs of suramin at a low micromolar range prior to an inhibitory component at higher concentrations. Suramin analogs substituted by phenyl and chlorine instead of methyl were the most efficient in promoting allosteric activation, with an enhancement of enzymatic activity of 250% and 630% respectively. We discuss the importance of exosite 2 as a regulatory site for ligands in both the procoagulant and inhibitory scenarios.