Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Eur J Hum Genet ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796577

ABSTRACT

Reanalyzing stored genomic data over time is highly effective in increasing diagnostic yield in rare disease. Automation holds the promise of delivering the benefits of reanalysis at scale. Our study aimed to understand current reanalysis practices among Australian clinical and laboratory genetics services and explore attitudes towards large-scale automated re-analysis. We collected audit data regarding testing and reanalysis volumes, policies and procedures from all Australian diagnostic laboratories providing rare disease genomic testing. A genetic health professionals' survey explored current practices, barriers to reanalysis, preferences and attitudes towards automation. Between 2018 and 2021, Australian diagnostic laboratories performed over 25,000 new genomic tests and 950 reanalyses, predominantly in response to clinician requests. Laboratory and clinical genetic health professionals (N = 134) identified workforce capacity as the principal barrier to reanalysis. No specific laboratory or clinical guidelines for genomic data reanalysis or policies were identified nationally. Perceptions of acceptability and feasibility of automating reanalysis were positive, with professionals emphasizing clinical and workflow benefits. In conclusion, there is a large and rapidly growing unmet need for reanalysis of existing genomic data. Beyond developing scalable automated reanalysis pipelines, leadership and policy are needed to successfully transform service delivery models and maximize clinical benefit.

3.
Article in English | MEDLINE | ID: mdl-38577897

ABSTRACT

BACKGROUND: Trio exome sequencing can be used to investigate congenital abnormalities identified on pregnancy ultrasound, but its use in an Australian context has not been assessed. AIMS: Assess clinical outcomes and changes in management after expedited genomic testing in the prenatal period to guide the development of a model for widespread implementation. MATERIALS AND METHODS: Forty-three prospective referrals for whole exome sequencing, including 40 trios (parents and pregnancy), two singletons and one duo were assessed in a tertiary hospital setting with access to a state-wide pathology laboratory. Diagnostic yield, turn-around time (TAT), gestational age at reporting, pregnancy outcome, change in management and future pregnancy status were assessed for each family. RESULTS: A clinically significant genomic diagnosis was made in 15/43 pregnancies (35%), with an average TAT of 12 days. Gestational age at time of report ranged from 16 + 5 to 31 + 6 weeks (median 21 + 3 weeks). Molecular diagnoses included neuromuscular and skeletal disorders, RASopathies and a range of other rare Mendelian disorders. The majority of families actively used the results in pregnancy decision making as well as in management of future pregnancies. CONCLUSIONS: Rapid second trimester prenatal genomic testing can be successfully delivered to investigate structural abnormalities in pregnancy, providing crucial guidance for current and future pregnancy management. The time-sensitive nature of this testing requires close laboratory and clinical collaboration to ensure appropriate referral and result communication. We found the establishment of a prenatal coordinator role and dedicated reporting team to be important facilitators. We propose this as a model for genomic testing in other prenatal services.

5.
Nat Med ; 29(7): 1681-1691, 2023 07.
Article in English | MEDLINE | ID: mdl-37291213

ABSTRACT

Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.


Subject(s)
Critical Illness , Rare Diseases , Infant , Child , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Rare Diseases/therapy , Multiomics , Whole Genome Sequencing/methods , Exome Sequencing
6.
JAMA Neurol ; 80(8): 868-869, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37213117

ABSTRACT

This case report describes segmental uniparental isodisomy causing an "inside-to-outside" limb-girdle muscular dystrophy due to a homozygous mutation in POGLUT1.


Subject(s)
Glucosyltransferases , Uniparental Disomy , Humans , Uniparental Disomy/genetics
7.
Neuromuscul Disord ; 33(6): 484-489, 2023 06.
Article in English | MEDLINE | ID: mdl-37209493

ABSTRACT

Pathogenic variants in DNMT3A are most commonly associated with Tatton-Brown-Rahman Syndrome (TBRS), but includes other phenotypes such as Heyn-Sproul-Jackson syndrome and acute myeloid leukemia (AML). We describe a patient presenting to the neuromuscular clinic with a de novo missense variant in DNMT3A where the striking clinical feature is that of a congenital myopathy with associated episodes of rhabdomyolysis, severe myalgias and chest pain along with phenotypic features associated with TBRS. Muscle biopsy showed minor myopathic features and cardiac investigations revealed mildly impaired bi-ventricular systolic function. We confirmed the DNA methylation profile matched haplo-insufficient TBRS cases, consistent with a loss of methyltransferase activity. Our report emphasizes the phenotypic overlap of patients with syndromic disorders presenting to neuromuscular clinics and limitations of gene panels in establishing a molecular diagnosis.


Subject(s)
Abnormalities, Multiple , Intellectual Disability , Muscular Diseases , Rhabdomyolysis , Humans , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Mutation , Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Phenotype , Rhabdomyolysis/diagnosis , Rhabdomyolysis/genetics
8.
Nat Med ; 29(1): 180-189, 2023 01.
Article in English | MEDLINE | ID: mdl-36658419

ABSTRACT

Pregnancy loss and perinatal death are devastating events for families. We assessed 'genomic autopsy' as an adjunct to standard autopsy for 200 families who had experienced fetal or newborn death, providing a definitive or candidate genetic diagnosis in 105 families. Our cohort provides evidence of severe atypical in utero presentations of known genetic disorders and identifies novel phenotypes and disease genes. Inheritance of 42% of definitive diagnoses were either autosomal recessive (30.8%), X-linked recessive (3.8%) or autosomal dominant (excluding de novos, 7.7%), with risk of recurrence in future pregnancies. We report that at least ten families (5%) used their diagnosis for preimplantation (5) or prenatal diagnosis (5) of 12 pregnancies. We emphasize the clinical importance of genomic investigations of pregnancy loss and perinatal death, with short turnaround times for diagnostic reporting and followed by systematic research follow-up investigations. This approach has the potential to enable accurate counseling for future pregnancies.


Subject(s)
Abortion, Spontaneous , Perinatal Death , Pregnancy , Humans , Female , Perinatal Death/etiology , Autopsy , Abortion, Spontaneous/genetics , Prenatal Diagnosis , Genomics
9.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36332611

ABSTRACT

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Subject(s)
Databases, Genetic , Laboratories , Humans , Genetic Variation , Australia , Genetic Testing
10.
NPJ Genom Med ; 4: 28, 2019.
Article in English | MEDLINE | ID: mdl-31754459

ABSTRACT

We describe a sibling pair displaying an early infantile-onset, progressive neurodegenerative phenotype, with symptoms of developmental delay and epileptic encephalopathy developing from 12 to 14 months of age. Using whole exome sequencing, compound heterozygous variants were identified in SLC5A6, which encodes the sodium-dependent multivitamin transporter (SMVT) protein. SMVT is an important transporter of the B-group vitamins biotin, pantothenate, and lipoate. The protein is ubiquitously expressed and has major roles in vitamin uptake in the digestive system, as well as transport of these vitamins across the blood-brain barrier. Pathogenicity of the identified variants was demonstrated by impaired biotin uptake of mutant SMVT. Identification of this vitamin transporter as the genetic basis of this disorder guided targeted therapeutic intervention, resulting clinically in improvement of the patient's neurocognitive and neuromotor function. This is the second report of biallelic mutations in SLC5A6 leading to a neurodegenerative disorder due to impaired biotin, pantothenate and lipoate uptake. The genetic and phenotypic overlap of these cases confirms mutations in SLC5A6 as the genetic cause of this disease phenotype. Recognition of the genetic disorder caused by SLC5A6 mutations is essential for early diagnosis and to facilitate timely intervention by triple vitamin (biotin, pantothenate, and lipoate) replacement therapy.

11.
Am J Hum Genet ; 102(5): 985-994, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29656860

ABSTRACT

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.


Subject(s)
Abnormalities, Multiple/genetics , Autism Spectrum Disorder/genetics , Genetic Predisposition to Disease , Genetic Variation , Intellectual Disability/genetics , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase E/genetics , Adolescent , Adult , Cell Line , Child , Exons/genetics , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Mutation/genetics , N-Terminal Acetyltransferase A/metabolism , N-Terminal Acetyltransferase E/metabolism , Pedigree , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism
12.
Genome Med ; 9(1): 41, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28454591

ABSTRACT

BACKGROUND: The return of research results (RoR) remains a complex and well-debated issue. Despite the debate, actual data related to the experience of giving individual results back, and the impact these results may have on clinical care and health outcomes, is sorely lacking. Through the work of the Australian Pancreatic Cancer Genome Initiative (APGI) we: (1) delineate the pathway back to the patient where actionable research data were identified; and (2) report the clinical utilisation of individual results returned. Using this experience, we discuss barriers and opportunities associated with a comprehensive process of RoR in large-scale genomic research that may be useful for others developing their own policies. METHODS: We performed whole-genome (n = 184) and exome (n = 208) sequencing of matched tumour-normal DNA pairs from 392 patients with sporadic pancreatic cancer (PC) as part of the APGI. We identified pathogenic germline mutations in candidate genes (n = 130) with established predisposition to PC or medium-high penetrance genes with well-defined cancer associated syndromes or phenotypes. Variants from candidate genes were annotated and classified according to international guidelines. Variants were considered actionable if clinical utility was established, with regard to prevention, diagnosis, prognostication and/or therapy. RESULTS: A total of 48,904 germline variants were identified, with 2356 unique variants undergoing annotation and in silico classification. Twenty cases were deemed actionable and were returned via previously described RoR framework, representing an actionable finding rate of 5.1%. Overall, 1.78% of our cohort experienced clinical benefit from RoR. CONCLUSION: Returning research results within the context of large-scale genomics research is a labour-intensive, highly variable, complex operation. Results that warrant action are not infrequent, but the prevalence of those who experience a clinical difference as a result of returning individual results is currently low.


Subject(s)
Genetic Predisposition to Disease , Genome, Human , Germ-Line Mutation , Pancreatic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Australia , Computer Simulation , DNA Mutational Analysis , Genomics , Humans , Middle Aged
13.
Gastroenterology ; 152(1): 68-74.e2, 2017 01.
Article in English | MEDLINE | ID: mdl-27856273

ABSTRACT

Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , DNA Mismatch Repair/genetics , Mutation , Pancreatic Neoplasms/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , DNA Mutational Analysis , Female , Genome , Humans , Male , Middle Aged , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Proto-Oncogene Proteins p21(ras)/genetics
14.
BMC Endocr Disord ; 16(1): 58, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27821113

ABSTRACT

BACKGROUND: The 46,XY female is characterised by a male karyotype and female phenotype arising due to any interruption in the sexual development pathways in utero. The cause is usually genetic and various genes are implicated. CASE PRESENTATION: Herein we describe a 46,XY woman who was first diagnosed with androgen insensitivity syndrome (testicular feminisation) at 18 years; however, this was later questioned due to the presence of intact Müllerian structures. The clinical phenotype suggested several susceptibility genes including SRY, DHH, NR5A1, NR0B1, AR, AMH, and AMHR2. To study candidate genes simultaneously, we performed whole genome sequencing. This revealed a novel and likely pathogenic missense variant (p.Arg130Pro, c.389G>C) in SRY, one of the major genes implicated in complete gonadal dysgenesis, hence securing this condition over androgen insensitivity syndrome as the cause of the patient's disorder of sexual development. CONCLUSION: This case highlights the emerging clinical utility of whole genome sequencing as a tool in differentiating disorders of sexual development.


Subject(s)
Androgen-Insensitivity Syndrome/diagnosis , Genome, Human , Gonadal Dysgenesis, 46,XY/diagnosis , Mutation, Missense , Sex-Determining Region Y Protein/genetics , Androgen-Insensitivity Syndrome/genetics , DNA Mutational Analysis , Diagnostic Errors , Female , Gonadal Dysgenesis, 46,XY/genetics , Humans , Male , Middle Aged , Sequence Analysis, DNA
15.
Nature ; 531(7592): 47-52, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26909576

ABSTRACT

Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-ß, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.


Subject(s)
Genes, Neoplasm/genetics , Genome, Human/genetics , Genomics , Mutation/genetics , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Pancreatic Ductal/classification , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , DNA Methylation , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-gamma/genetics , Histone Demethylases/genetics , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/genetics , Humans , Mice , Nuclear Proteins/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Receptors, Cytoplasmic and Nuclear/genetics , Survival Analysis , Trans-Activators/genetics , Transcription Factors/genetics , Transcription, Genetic , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Zebrafish Proteins
17.
Am J Med Genet A ; 167A(11): 2697-701, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26289840

ABSTRACT

The Mitochondrial tRNALeu (MT-TL1) mutation, m.3243A>G constitutes the commonest identified mitochondrial genome mutation. Characteristically, giving rise to MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes), a phenotypic spectrum associated with this genetic variant is now apparent. We report on the first patient with infantile hemiparesis, without comorbid encephalopathy, attributed to this variant. This further expands the recognized disease spectrum and highlights the need to consider mitochondrial genomic mutations in cases of cryptogenic focal neurological deficit in infancy. The potential for genetic disease modifiers is additionally discussed.


Subject(s)
Mitochondria/genetics , Mutation/genetics , Nervous System Diseases/genetics , RNA, Transfer, Leu/genetics , Child, Preschool , DNA, Mitochondrial/genetics , Exome/genetics , Female , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Sequence Analysis, DNA
18.
J Pathol ; 237(3): 363-78, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26172396

ABSTRACT

Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2) = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting HER3, which is broadly over-expressed and activated in BMs, independent of primary site and systemic therapy.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Gene Expression Profiling/methods , Genomics/methods , Biomarkers, Tumor/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/enzymology , DNA Mutational Analysis , Enzyme Activation , Gene Amplification , Gene Dosage , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Immunohistochemistry , Ligands , Molecular Targeted Therapy , Mutation , Phenotype , Phosphorylation , Precision Medicine , Predictive Value of Tests , Protein Kinase Inhibitors/therapeutic use , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Receptor, ErbB-4/genetics , Receptor, ErbB-4/metabolism , Tumor Microenvironment
19.
Nature ; 521(7553): 489-94, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26017449

ABSTRACT

Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Genome, Human/genetics , Ovarian Neoplasms/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Cohort Studies , Cyclin E/genetics , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/genetics , DNA Methylation , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Female , Genes, BRCA1 , Genes, BRCA2 , Genes, Neurofibromatosis 1 , Germ-Line Mutation/genetics , Humans , Mutagenesis/genetics , Oncogene Proteins/genetics , Ovarian Neoplasms/drug therapy , PTEN Phosphohydrolase/genetics , Promoter Regions, Genetic/genetics , Retinoblastoma Protein/genetics
20.
Nature ; 518(7540): 495-501, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25719666

ABSTRACT

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Subject(s)
DNA Mutational Analysis , Genome, Human/genetics , Genomics , Mutation/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , DNA Repair/genetics , Female , Genes, BRCA1 , Genes, BRCA2 , Genetic Markers/genetics , Genomic Instability/genetics , Genotype , Humans , Mice , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/drug therapy , Platinum/pharmacology , Point Mutation/genetics , Poly(ADP-ribose) Polymerase Inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...