Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 26(7): 9081-9094, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715866

ABSTRACT

Many Fourier-domain optical coherence tomography (FD-OCT) systems sample the interference fringes with a non-uniform wavenumber (k) interval, introducing a chirp to the signal that depends on the path length difference underlying each fringe. A dispersion imbalance between sample and reference arms also generates a chirp in the fringe signal which, in contrast, is independent of depth. Fringe interpolation to obtain a signal linear in k and compensate dispersion imbalance is critical to achieving bandwidth-limited axial resolution. In this work, we propose an optimization-based algorithm to perform robust and automated calibration of FD-OCT systems, recovering both the interpolation function and the dispersion imbalance. Our technique relies on the fact that the unique function that correctly linearizes the fringe data in k space produces a depth-independent chirp. The calibration procedure requires experimental data corresponding to a single reflector at various depth locations, which can easily be obtained by acquiring data while moving a sample mirror in depth. We have tested both spectral domain OCT and swept source OCT systems with various nonlinearities. Results indicate that the proposed calibration method has excellent performance on a wide range of data sets and enables nearly constant resolution at all imaging depths. An implementation of the algorithm is available online.

2.
Opt Express ; 25(7): 8255-8266, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28380940

ABSTRACT

Improving the axial resolution by providing wider bandwidth wavelength swept lasers remains an important issue for optical frequency domain imaging (OFDI). Here, we demonstrate a wide tuning range, all-fiber wavelength swept laser at a center wavelength of 1250 nm by combining two ring cavities that share a single Fabry-Perot tunable filter. The two cavities contain semiconductor optical amplifiers with central wavelengths of 1190 nm and 1292 nm, respectively. To avoid disturbing interference effects in the overlapping spectral region, we modulated the amplifiers in order to obtain consecutive wavelength sweeps in the two spectral regions. The two sweeps were fused together in post-processing to achieve a total scanning range of 223 nm, corresponding to 3.3 µm axial resolution in air. We confirm improved image quality and reduced speckle size in tomograms of swine esophagus ex vivo, and human skin and nailbed in vivo.


Subject(s)
Fiber Optic Technology , Lasers , Optical Imaging/methods , Semiconductors , Algorithms , Amplifiers, Electronic , Animals , Esophagus/diagnostic imaging , Fiber Optic Technology/instrumentation , Fourier Analysis , Humans , Skin/diagnostic imaging , Swine , Tomography, Optical Coherence/methods
3.
Nat Commun ; 6: 8063, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26333531

ABSTRACT

The photocurrent conversions of transition metal dichalcogenide nanosheets are unprecedentedly impressive, making them great candidates for visible range photodetectors. Here we demonstrate a method for fabricating micron-thick, flexible films consisting of a variety of highly separated transition metal dichalcogenide nanosheets for excellent band-selective photodetection. Our method is based on the non-destructive modification of transition metal dichalcogenide sheets with amine-terminated polymers. The universal interaction between amine and transition metal resulted in scalable, stable and high concentration dispersions of a single to a few layers of numerous transition metal dichalcogenides. Our MoSe2 and MoS2 composites are highly photoconductive even at bending radii as low as 200 µm on illumination of near infrared and visible light, respectively. More interestingly, simple solution mixing of MoSe2 and MoS2 gives rise to blended composite films in which the photodetection properties were controllable. The MoS2/MoSe2 (5:5) film showed broad range photodetection suitable for both visible and near infrared spectra.

4.
Opt Express ; 22(22): 27476-88, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25401895

ABSTRACT

Enhanced optical transmission (EOT) and its polarization extinction ratio (PER) of a sub-wavelength polygonal aperture surrounded by polygonal grooves are investigated numerically by finite difference time domain (FDTD) method. Effects of light polarization on EOT were analyzed and compared for four types of geometrical structures: triangle aperture surrounded by triangle grooves, square aperture surrounded by square grooves, rhombus aperture surrounded by rhombus grooves, and pentagon aperture surrounded by pentagon grooves. The effects of relative angles between the symmetry axes of polygons and the light polarization were thoroughly analyzed. Among these plasmonic polygonal bull's eye structures, the rhombus showed a maximum EOT several times larger than others. In contrast to the prior normal incident condition, we further analyzed the impacts of the incident angle and we found a wideband tunability of EOT wavelengths.

5.
Opt Express ; 22(19): 23732-42, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25321840

ABSTRACT

Application of a multilayer Molybdenum Disulfide (MoS2) thin film as a saturable absorber was experimentally demonstrated by realizing a stable and robust passive mode-locked fiber laser via the evanescent field interaction between the light and the film. The MoS2 film was grown by chemical vapor deposition, and was then transferred to a side polished fiber by a lift-off method. Intensity-dependent optical transmission through the MoS2 thin film on side polished fiber was experimentally observed showing efficient saturable absorption characteristics. Using erbium doped fiber as an optical gain medium, we built an all-fiber ring cavity, where the MoS2 film on the side polished fiber was inserted as a saturable absorber. Stable dissipative soliton pulse trains were successfully generated in the normal dispersion regime with a spectral bandwidth of 23.2 nm and the pulse width of 4.98 ps. By adjusting the total dispersion in the cavity, we also obtained soliton pulses with a width of 637 fs in the anomalous dispersion regime near the lasing wavelength λ = 1.55 µm. Detailed and systematic experimental comparisons were made for stable mode locking of an all-fiber laser cavity in both the normal and anomalous regimes.


Subject(s)
Disulfides , Fiber Optic Technology/instrumentation , Graphite , Light , Molybdenum , Equipment Design , Gases , Lasers, Solid-State
6.
Opt Express ; 21(12): 14074-83, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787597

ABSTRACT

An in-line chemical gas sensor was proposed and experimentally demonstrated using a new C-type fiber and a Ge-doped ring defect photonic crystal fiber (PCF). The C-type fiber segment served as a compact gas inlet/outlet directly spliced to PCF, which overcame previous limitations in packaging and dynamic responses. C-type fiber was prepared by optimizing drawing process for a silica tube with an open slot. Splicing conditions for SMF/C-type fiber and PCF/C-type fiber were experimentally established to provide an all-fiber sensor unit. To enhance the sensitivity and light coupling efficiency we used a special PCF with Ge-doped ring defect to further enhance the sensitivity and gas flow rate. Sensing capability of the proposed sensor was investigated experimentally by detecting acetylene absorption lines.


Subject(s)
Acetylene/analysis , Fiber Optic Technology/instrumentation , Gases/analysis , Germanium/chemistry , Refractometry/instrumentation , Transducers , Crystallization , Equipment Design , Equipment Failure Analysis , Germanium/radiation effects
7.
Opt Express ; 21(26): 32668-79, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24514860

ABSTRACT

We report enhanced optical transmission (EOT) through a hexagonal aperture surrounded by polygonal segmented grooves to explore its unique polarization dependence. Effects of light polarization on EOT through the hexagonal aperture were systematically investigated for three types of grooves: concentric hexagonal grooves, linear segmented grooves and wedge segmented grooves. Significant increase in EOT was observed for the polarization directed along the groove axis compared to the other orthogonal polarization, which can be further applied to polarization dependent photonic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...