Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1674: 463148, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35598541

ABSTRACT

Enveloped viral vectors like lentiviral vectors pose purification challenges due to their low stability. A gentle purification method is considered one of the major bottlenecks for lentiviral vector bioprocessing. To overcome these challenges, a promising method is steric exclusion chromatography which has been used to purify a variety of target molecules. In this study, we successfully identified optimal process parameters for steric exclusion chromatography to purify lentiviral vectors. Lentiviral vector particle recoveries and infectious recoveries of 86% and 88%, respectively, were achieved. The process parameters optimal for steric exclusion chromatography were determined as follows: polyethylene glycol with a molecular weight of 4000 Da, a polyethylene glycol concentration of 12.5%, and a flow rate of 7 mL⋅min-1 using 5 layers of stabilized cellulose membranes as a stationary phase. High protein and dsDNA removal of approximately 80% were obtained. The remaining polyethylene glycol concentration in the eluate was determined. We defined the maximum loading capacity as 7.5 × 1012 lentiviral particles for the lab device used and provide deeper insights into loading strategies. Furthermore, we determined critical process parameters like pressure. We demonstrated in our experiments that steric exclusion chromatography is a gentle purification method with high potential for fragile enveloped viral vectors as it yields high recoveries while efficiently removing impurities.


Subject(s)
Cellulose , Genetic Vectors , Chromatography, Gel , Hydrophobic and Hydrophilic Interactions , Polyethylene Glycols/chemistry
2.
ACS Omega ; 5(20): 11455-11465, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32478234

ABSTRACT

We investigated the effect of carboxymethyl cellulose (CMC) and the particulate fluorine/acrylate hybrid polymer (FAHP) on the flow behavior of LiFePO4-based cathode slurries as well as on electrical and mechanical properties of the corresponding dry layers. CMC dissolves in water and partly adsorbs on the active particles. Thus, it has a strong impact on particle dispersion and a critical CMC concentration distinguished by a minimum in yield stress and high shear viscosity is found, indicating an optimum state of particle dispersion. In contrast, the nanoparticulate FAHP binder has no effect on slurry rheology. The electrical conductivity of the dry layer exhibits a maximum at a CMC concentration corresponding to the minimum in slurry viscosity but monotonically decreases with increasing FAHP concentration. Adhesion to the current collector is provided by FAHP, and the line load in peel tests strongly increases with FAHP concentration, whereas CMC does not contribute to adhesion. The electrical conductivity and adhesion values obtained here excel reported values for similar aqueous LiFePO4-based cathode layers using alternative polymeric binders. Both CMC and FAHP contribute to the cohesive strength of the layers; the contribution of CMC, however, is stronger than that of FAHP despite its lower intrinsic mechanical strength. We attribute this to its impact on the cathode microstructure since high CMC concentrations result in a strong alignment of LiFePO4 particles, which yields superior cohesive strength.

SELECTION OF CITATIONS
SEARCH DETAIL
...