Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Educ ; 31(4): 1529-1535, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34026305

ABSTRACT

During COVID-19, the anatomy faculty and students at Schulich School of Medicine and Dentistry observed strengths and weaknesses in their transition to online learning. A "four-prong" approach to teaching anatomy was developed. Asynchronous content modules were tailored to specific learning objectives, virtual labs were implemented to work through case-based applications, "live from the lab" review sessions provided the opportunity for interaction and integration, and finally, limited face-to-face laboratory sessions provided an opportunity for supervised consolidation with cadaveric specimens. Our approach may be used by other institutions to enhance anatomical education and student engagement.

2.
J Hand Ther ; 34(4): 604-611, 2021.
Article in English | MEDLINE | ID: mdl-33309432

ABSTRACT

STUDY DESIGN: Clinical measurement. INTRODUCTION: Wrist range of motion (ROM) is considered the universal measurement of success for both surgical and non-surgical treatments. A goniometer can be challenging for an individual to use by themselves, whereas the Dartfish app can analyze and provide immediate feedback to monitor and evaluate patients' kinematic changes during recovery after injury. PURPOSE OF STUDY: To establish the validity and reliability of the Dartfish app measuring ROM to be used in clinical applications. METHODS: Twelve healthy participants, (18-25 yrs) , with no previous history of wrist injuries, were recruited for this study. Flexion/extension, radial/ulnar deviation, and supination/pronation range of motion measures were collected using a goniometer (two-arm) and Dartfish video analysis. Statistical analyses, such as t-tests and the Pearson correlation coefficient, as well as reliability analyses, such as intraclass correlation coefficient (ICC) and Bland-Altman plots, were performed. RESULTS: There was no significant difference between the goniometer and Dartfish ROM measurements except for ulnar deviation. The concurrent validity showed nearly perfect correlations between examiners using Dartfish with r-values in the range 0.90-0.99, and between examiner2 and the goniometer showed medium, large, and very large correlations since the values were in the range 0.418-0.829. The ICC for test-retest reliability had an excellent agreement that ranged from 0.993-0.999, and the ICC values for inter-observer reliability had good and excellent agreement, which were in the range 0.893-0.997. CONCLUSION: Overall, the results demonstrated that the Dartfish app was a reliable and valid method to measure wrist and forearm ROM. A patient would be able to easily record their own ROM measurement videos and track their progress during their recovery without the need of their physician to track their progress.


Subject(s)
Forearm , Wrist , Humans , Range of Motion, Articular , Reproducibility of Results , Wrist Joint
3.
Front Physiol ; 10: 1391, 2019.
Article in English | MEDLINE | ID: mdl-31780955

ABSTRACT

BACKGROUND: Neonatal asphyxia caused kidney injury and severe hypertension in a newborn. An unusually dilatated ascending aorta developed. Dialysis and pharmacological treatment led to partial recovery of the ascending aortic diameters. It was hypothesized that the aortic dilatation may be associated with aortic stiffening, peripheral resistance, and cardiovascular changes. Mathematical modeling was used to better understand the potential causes of the hypertension, and to confirm our clinical treatment within the confines of the model's capabilities. METHODS: The patient's systolic arterial blood pressure showed hypertension. Echocardiographic exams showed ascending aorta dilatation during hypertension, which partially normalized upon antihypertensive treatment. To explore the underlying mechanisms of the aortic dilatation and hypertension, an existing lumped parameter hemodynamics model was deployed. Hypertension was simulated using realistic literature informed parameter values. It was also simulated using large parameter perturbations to demonstrate effects. Simulations were designed to permit examination of causal mechanisms. The hypertension inducing effects of aortic stiffnesses, vascular resistances, and cardiac hypertrophy on blood flow and pressure were simulated. Sensitivity analysis was used to stratify causes. RESULTS: In agreement with our clinical diagnosis, the model showed that an increase of aortic stiffness followed by augmentation of peripheral resistance are the prime causes of realistic hypertension. Increased left ventricular elastance may also cause hypertension. Ascending aortic pressure and flow increased in the simultaneous presence of left ventricle hypertrophy and augmented small vessel resistance, which indicate a plausible condition for ascending aorta dilatation. In case of realistic hypertension, sensitivity analysis showed that the treatment of both the large vessel stiffness and small vessel resistance are more important in comparison to cardiac hypertrophy. CONCLUSION AND DISCUSSION: Large vessel stiffness was found to be the prime factor in arterial hypertension, which confirmed the clinical treatment. Treatment of cardiac hypertrophy appears to provide significant benefit but may be secondary to treatment of large vessel stiffness. The quantitative grading of pathophysiological mechanisms provided by the modeling may contribute to treatment recommendations. The model was limited due to a lack of data suitable to permit model identification.

SELECTION OF CITATIONS
SEARCH DETAIL
...