Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4064, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374296

ABSTRACT

The vegetable oil degumming process plays a critical role in refining edible oil. Phospholipids (PL) removal from crude extracted soybean oil (SBO) by the enzymatic degumming process has been investigated in this work. Enzymatic degumming of extracted SBO with microbial phospholipase A1 PLA-1 Quara LowP and Lecitase Ultra enzymes have also been studied comparatively. The main novelty of our work is the use of the enzymatic degumming process on an industrial scale (600 tons a day). Many parameters have been discussed to understand in detail the factors affecting oil losses during the degumming process. The factors such as chemical conditioning (CC) by phosphoric acid 85%, the enzyme dosage mg/kg (feedstock dependent), the enzymatic degumming reaction time, and the characteristics of the plant-processed SBO have been discussed in detail. As a main point, the degummed oil with a phosphorus content of < 10 mg/kg increases yield. Quara LowP and Lecitase Ultra enzymes are not specific for certain phospholipids PL; however, the conversion rate depends on the SBO phospholipid composition. After 4 h, over 99% of Phospholipids were degraded to their lysophospholipid LPL (lysolecithin). The results showed a significant effect of operating parameters and characteristics of different origins of SBO, fatty acids FFA content, Phosphorus content and total divalent metals (Calcium Ca, Magnesium Mg and Iron Fe mg/kg) content on the oil loss. The benefit of using enzymatic degumming of vegetable oils rather than traditional chemical refining is that the enzymatic degumming process reduces total oil loss. This decrease is known as enzymatic yield. The enzymatic degumming also decreases wastewater and used chemicals and running costs; moreover, it enables physical refining by lowering the residue phosphorus to < 10 mg/kg.


Subject(s)
Plant Oils , Soybean Oil , Soybean Oil/chemistry , Plant Oils/chemistry , Phospholipids , Phospholipases A1 , Manufacturing and Industrial Facilities , Phosphorus
2.
Pharmaceutics ; 15(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242760

ABSTRACT

Wound healing has grown to be a significant problem at a global scale. The lack of multifunctionality in most wound dressing-based biopolymers prevents them from meeting all clinical requirements. Therefore, a multifunctional biopolymer-based tri-layered hierarchically nanofibrous scaffold in wound dressing can contribute to skin regeneration. In this study, a multifunctional antibacterial biopolymer-based tri-layered hierarchically nanofibrous scaffold comprising three layers was constructed. The bottom and the top layers contain hydrophilic silk fibroin (SF) and fish skin collagen (COL), respectively, for accelerated healing, interspersed with a middle layer of hydrophobic poly-3-hydroxybutyrate (PHB) containing amoxicillin (AMX) as an antibacterial drug. The advantageous physicochemical properties of the nanofibrous scaffold were estimated by SEM, FTIR, fluid uptake, contact angle, porosity, and mechanical properties. Moreover, the in vitro cytotoxicity and cell healing were assessed by MTT assay and the cell scratching method, respectively, and revealed excellent biocompatibility. The nanofibrous scaffold exhibited significant antimicrobial activity against multiple pathogenic bacteria. Furthermore, the in vivo wound healing and histological studies demonstrated complete wound healing in wounded rats on day 14, along with an increase in the expression level of the transforming growth factor-ß1 (TGF-ß1) and a decrease in the expression level of interleukin-6 (IL-6). The results revealed that the fabricated nanofibrous scaffold is a potent wound dressing scaffold, and significantly accelerates full-thickness wound healing in a rat model.

3.
Sci Rep ; 12(1): 20881, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463246

ABSTRACT

In one pot, the self-assembly of AgNO3 and 2-chloroquinoxaline (2Cl-quinox) in water-ethanol mixture afforded two novel crystalline Ag(I) complexes. The major product is the polymeric complex [Ag(2Cl-quinox)(NO3)]n; (1), while the minor product (2) comprises two molecules which are the monomeric [Ag(2Cl-quinox)2(NO3)]; (2a) and polymeric [Ag(2Cl-quinox)(NO3)]n; (2b) complexes. The single crystal X-ray structure revealed that 1 and 2b are made up of two-dimensional infinite sheets. In contrast, 2a is a monomeric complex which has a highly distorted tetrahedral geometry around Ag(I) center. In all cases, the 2Cl-quinox molecule acts as a terminal monodentate ligand. Complexes 1 and 2b have similar molecular structures and also have almost similar crystal packing. Using Hirshfeld surface analysis, the O…H hydrogen bonds and π-π stacking interactions contributed significantly to the molecular packing. Both complexes have broad-spectrum action towards multi drug-resistance bacteria. The most effective function of 2 is against Proteus morganii, with a MIC value of 8 µg/mL. Complex 2 (IC50 = 5.93 ± 0.52 µg/mL) has remarkably greater cytotoxic effect against lung carcinoma (A-549) than cis-platin (IC50 = 7.5 ± 0.69 µg/mL) and AgNO3 (IC50 = 14.7 ± 0.53 µg/mL). The higher Ag-content in 2 could be the main reason for its higher cytotoxicity than 1.


Subject(s)
Anti-Infective Agents , Quinoxalines , X-Rays , Quinoxalines/pharmacology , Ligands , Anti-Bacterial Agents/pharmacology
4.
Polymers (Basel) ; 14(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35808634

ABSTRACT

The main aim of this work is to treat sugarcane bagasse agricultural waste and prepare an efficient, promising, and eco-friendly adsorbent material. Biochar is an example of such a material, and it is an extremely versatile and eco-friendly biosorbent to treat wastewater. Crystal violet (CV)-dye and methylene blue (MB)-dye species are examples of serious organic pollutants. Herein, biochar was prepared firstly from sugarcane bagasse (SCB), and then a biochar biosorbent was synthesized through pyrolysis and surface activation with NaOH. SEM, TEM, FTIR, Raman, surface area, XRD, and EDX were used to characterize the investigated materials. The reuse of such waste materials is considered eco-friendly in nature. After that, the adsorption of MB and CV-species from synthetically prepared wastewater using treated biochar was investigated under various conditions. To demonstrate the study's effectiveness, it was attempted to achieve optimum effectiveness at an optimum level by working with time, adsorbent dose, dye concentration, NaCl, pH, and temperature. The number of adsorbed dyes reduced as the dye concentrations increased and marginally decreased with NaCl but increased with the adsorbent dosage, pH, and temperature of the solution increased. Furthermore, it climbed for around 15 min before reaching equilibrium, indicating that all pores were almost full. Under the optimum condition, the removal perecentages of both MB and CV-dyes were ≥98%. The obtained equilibrium data was represented by Langmuir and Freundlich isotherm models. Additionally, the thermodynamic parameters were examined at various temperatures. The results illustrated that the Langmuir isotherm was utilized to explain the experimental adsorption processes with maximum adsorption capacities of MB and CV-dyes were 114.42 and 99.50 mgg-1, respectively. The kinetic data were estimated by pseudo-first and pseudo-second-order equations. The best correlation coefficients of the investigated adsorption processes were described by the pseudo-second-order kinetic model. Finally, the data obtained were compared with some works published during the last four years.

5.
Article in English | MEDLINE | ID: mdl-25965520

ABSTRACT

Two new Ag(+) complexes with 3-bromoquinoline (3BrQ) have been synthesized and characterized using elemental analysis, FTIR, NMR and mass spectra. The studied complexes have the formula [Ag(3BrQ)(OAC)]; 1 and [Ag(3BrQ)3(TCA)]; 2 where OAC and TCA are acetate and trichloroacetate, respectively. Based on the DFT calculations, 1 and 2 showed distorted trigonal planar and distorted tetrahedral coordination geometry. The electronic properties such as dipole moment (µ), polarizability (α0), HOMO and LUMO energies are calculated using the same level of theory. These electronic parameters were used to predict the nonlinear optical properties of the studied compounds. The studied silver complexes were predicted to be better nonlinear optical materials than urea. The electronic spectra of these complexes are calculated using the TD-DFT calculations. The infrared vibrational spectra were assigned based on the potential energy distribution (PED) analysis. The calculated (1)H NMR chemical shift values using GIAO approach showed good agreement with the experimental data. The intramolecular charge transfer interactions of the title molecules were studied by natural bond orbital (NBO) analysis.


Subject(s)
Coordination Complexes/chemistry , Quinolines/chemistry , Silver/chemistry , Coordination Complexes/chemical synthesis , Halogenation , Magnetic Resonance Spectroscopy , Models, Molecular , Quantum Theory , Quinolines/chemical synthesis , Spectroscopy, Fourier Transform Infrared
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 130: 453-65, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24813274

ABSTRACT

A new [Ag(E3Q)2(TCA)] complex; (E3Q=Ethyl 3-quinolinecarboxylate and TCA=Trichloroacetate) has been synthesized and characterized using elemental analysis, FTIR, NMR and mass spectroscopy. The molecular geometry and spectroscopic properties of the complex as well as the free ligand have been calculated using the hybrid B3LYP method. The calculations predicted a distorted tetrahedral arrangement around Ag(I) ion. The vibrational spectra of the studied compounds have been assigned using potential energy distribution (PED). TD-DFT method was used to predict the electronic absorption spectra. The most intense absorption band showed a bathochromic shift and lowering of intensity in case of the complex (233.7 nm, f=0.5604) compared to E3Q (λmax=228.0 nm, f=0.9072). The calculated (1)H NMR chemical shifts using GIAO method showed good correlations with the experimental data. The computed dipole moment, polarizability and HOMO-LUMO energy gap were used to predict the nonlinear optical (NLO) properties. It is found that Ag(I) enhances the NLO activity. The natural bond orbital (NBO) analyses were used to elucidate the intramolecular charge transfer interactions causing stabilization for the investigated systems.


Subject(s)
Carboxylic Acids/chemistry , Quinolines/chemistry , Silver/chemistry , Trichloroacetic Acid/chemistry , Ligands , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Conformation , Molecular Structure , Optics and Photonics , Software , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Static Electricity , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...