Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(5): 2107-2116, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38277386

ABSTRACT

A new detection method based on the photoluminescence properties of dye-sensitized lanthanide nanoparticles (Ln NPs) was developed for enzyme-linked immunosorbent assays (ELISAs). In this method, the horseradish peroxidase (HRP) enzyme catalyzes the oxidation of phenol derivatives in the presence of hydrogen peroxide, providing dimers that are able to interact with the Ln NP surface and to efficiently photosensitize the Ln ions. Due to the very long emission lifetime of Ln, the time-gated detection of Ln NP luminescence allows the elimination of background noise due to the biological environment. After a comparison of the enzyme-catalyzed oxidation of various phenol derivatives, methyl 4-hydroxyphenyl acetate (MHPA) was selected as the most promising substrate, as the highest Ln emission intensity was observed following its HRP-catalyzed oxidation. After a meticulous optimization of the conditions of both the enzymatic reaction and the Ln sensitization (buffer, pH, concentration of the reactants, NP type, etc.), this new detection method was successfully implemented in a commercial insulin ELISA kit as a proof-of-concept, with an increased sensitivity compared to the commercial detection method.


Subject(s)
Lanthanoid Series Elements , Metal Nanoparticles , Luminescence , Lanthanoid Series Elements/chemistry , Horseradish Peroxidase/chemistry , Enzyme-Linked Immunosorbent Assay , Phenols , Hydrogen Peroxide/analysis
2.
Nanoscale ; 14(38): 13915-13949, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36072997

ABSTRACT

Due to their exceptional luminescent properties, lanthanide (Ln) complexes represent a unique palette of probes in the spectroscopic toolkit. Their extremely weak brightness due to forbidden Ln electronic transitions can be overcome by indirect dye-sensitization from the antenna effect brought by organic ligands. Despite the improvement brought by the antenna effect, (bio)analytical applications with discrete Ln complexes as luminescent markers still suffers from low sensitivity as they are limited by the complex brightness. Thus, there is a need to develop nano-objects that cumulate the spectroscopic properties of multiple Ln ions. This review firstly gives a brief introduction of the spectral properties of lanthanides both in complexes and in nanoparticles (NPs). Then, the research progress of the design of Ln-doped inorganic NPs with capping antennas, Ln-complex encapsulated NPs and Ln-complex surface functionalized NPs is presented along with a summary of the various photosensitizing ligands and of the spectroscopic properties (excited-state lifetime, brightness, quantum yield). The review also emphasizes the problems and limitations encountered over the years and the solutions provided to address them. Finally, a comparison of the advantages and drawbacks of the three types of NP is provided as well as a conclusion about the remaining challenges both in the design of brighter NPs and in the luminescence based applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...