Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
SLAS Discov ; 27(1): 68-76, 2022 01.
Article in English | MEDLINE | ID: mdl-35058178

ABSTRACT

There is substantial evidence that in addition to nicotine, other compounds found in tobacco smoke significantly influence smoking behavior. Further, recent years have seen an explosion in the availability of non-combusted products that deliver nicotine, such as e-cigarettes and "home-brew" vaping devices that are essentially unregulated. There are many thousands of compounds in tobacco smoke alone, and new products are constantly introducing new compounds. Uncovering which of these compounds are active, across multiple smoking-relevant subtypes of the nicotinic acetylcholine receptor (nAChR) that influence tobacco/nicotine addiction, requires a high-throughput screening (HTS) approach. Accordingly, we developed a panel of HTS-friendly cell-based assays, all performed in the same cellular background and using the same membrane potential dye readout, to measure the function of the α3ß4-, α4ß2-, and α6ß2-nAChR subtypes. These subtypes have each been prominently and consistently associated with human smoking behavior. We validated our assays by performing pilot screening of an expanded set of the Prestwick FDA-approved drug library. The screens displayed excellent performance parameters, and moderate hit rates (mean of 1.2% across all three assays) were achieved when identifying antagonists (chosen since effects of endogenous antagonists on consumption of nicotine/tobacco products are under-studied). Validation rates using an orthogonal assay (86Rb+ efflux) averaged 73% across the three assays. The resulting panel of assays represents a valuable new platform with which to screen and identify nAChR subtype-selective compounds. This provides a resource for identifying smoking-related compounds in both combusted and non-combusted tobacco products, with potential relevance in the search for additional smoking-cessation therapies.


Subject(s)
Electronic Nicotine Delivery Systems , Receptors, Nicotinic , Tobacco Smoke Pollution , High-Throughput Screening Assays , Humans , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Smoking/drug therapy
2.
Cell Rep ; 35(13): 109291, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34192548

ABSTRACT

To identify therapeutic targets for KRAS mutant pancreatic cancer, we conduct a druggable genome small interfering RNA (siRNA) screen and determine that suppression of BCAR1 sensitizes pancreatic cancer cells to ERK inhibition. Integrative analysis of genome-scale CRISPR-Cas9 screens also identify BCAR1 as a top synthetic lethal interactor with mutant KRAS. BCAR1 encodes the SRC substrate p130Cas. We determine that SRC-inhibitor-mediated suppression of p130Cas phosphorylation impairs MYC transcription through a DOCK1-RAC1-ß-catenin-dependent mechanism. Additionally, genetic suppression of TUBB3, encoding the ßIII-tubulin subunit of microtubules, or pharmacological inhibition of microtubule function decreases levels of MYC protein in a calpain-dependent manner and potently sensitizes pancreatic cancer cells to ERK inhibition. Accordingly, the combination of a dual SRC/tubulin inhibitor with an ERK inhibitor cooperates to reduce MYC protein and synergistically suppress the growth of KRAS mutant pancreatic cancer. Thus, we demonstrate that mechanistically diverse combinations with ERK inhibition suppress MYC to impair pancreatic cancer proliferation.


Subject(s)
Crk-Associated Substrate Protein/metabolism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Microtubules/metabolism , Pancreatic Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-myc/metabolism , Acetamides/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Calpain/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Drug Synergism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Half-Life , Humans , Microtubules/drug effects , Morpholines/pharmacology , Mutation/genetics , Organoids/drug effects , Organoids/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/pharmacology , Transcription, Genetic/drug effects , Tubulin/metabolism , Xenograft Model Antitumor Assays , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism
3.
Methods Mol Biol ; 1470: 137-49, 2016.
Article in English | MEDLINE | ID: mdl-27581290

ABSTRACT

High-throughput RNA interference (HT-RNAi) is a powerful tool that can be used to knock down gene expression in order to identify novel genes and pathways involved in many cellular processes. It is a systematic, yet unbiased, approach to identify essential or synthetic lethal genes that promote cell survival in diseased cells as well as genes that confer resistance or sensitivity to drug treatment. This information serves as a foundation for enhancing current treatments for cancer and other diseases by identifying new drug targets, uncovering potential combination therapies, and helping clinicians match patients with the most effective treatment based on genetic information. Here, we describe the method of performing an in vitro HT-RNAi screen using chemically synthesized siRNA.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays/methods , RNA Interference , RNA, Small Interfering , Gene Knockdown Techniques , Gene Silencing , Genes, Essential
4.
Oncotarget ; 7(12): 13797-809, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26883194

ABSTRACT

Therapies targeting the tyrosine kinase activity of Epidermal Growth Factor Receptor (EGFR) have been proven to be effective in treating a subset of non-small cell lung cancer (NSCLC) patients harboring activating EGFR mutations. Inevitably these patients develop resistance to the EGFR-targeted tyrosine kinase inhibitors (TKIs). Here, we performed integrated genomic analyses using an in vitro system to uncover alternative genomic mechanisms responsible for acquired resistance to EGFR-TKIs. Specifically, we identified 80 genes whose expression is significantly increased in the erlotinib-resistant clones. RNAi-based systematic synthetic lethal screening of these candidate genes revealed that suppression of one upregulated transcript, SCRN1, a secernin family member, restores sensitivity to erlotinib by enhancing inhibition of PI3K/AKT signaling pathway. Furthermore, immunohistochemical analysis revealed increased levels of SCRN1 in 5 of 11 lung tumor specimens from EGFR-TKIs resistant patients. Taken together, we propose that upregulation of SCRN1 is an additional mechanism associated with acquired resistance to EGFR-TKIs and that its suppression serves as a novel therapeutic strategy to overcome drug resistance in these patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Erlotinib Hydrochloride/pharmacology , Genomics/methods , Lung Neoplasms/genetics , Mutation , Nerve Tissue Proteins/genetics , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinogenesis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , ErbB Receptors/antagonists & inhibitors , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/genetics , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Cancer Cell ; 29(1): 75-89, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26725216

ABSTRACT

Induction of compensatory mechanisms and ERK reactivation has limited the effectiveness of Raf and MEK inhibitors in RAS-mutant cancers. We determined that direct pharmacologic inhibition of ERK suppressed the growth of a subset of KRAS-mutant pancreatic cancer cell lines and that concurrent phosphatidylinositol 3-kinase (PI3K) inhibition caused synergistic cell death. Additional combinations that enhanced ERK inhibitor action were also identified. Unexpectedly, long-term treatment of sensitive cell lines caused senescence, mediated in part by MYC degradation and p16 reactivation. Enhanced basal PI3K-AKT-mTOR signaling was associated with de novo resistance to ERK inhibitor, as were other protein kinases identified by kinome-wide siRNA screening and a genetic gain-of-function screen. Our findings reveal distinct consequences of inhibiting this kinase cascade at the level of ERK.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/genetics , Mice , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Pancreatic Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Time
6.
Genome Med ; 6(1): 9, 2014.
Article in English | MEDLINE | ID: mdl-24484537

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is a highly lethal cancer characterized by complex aberrant genomes. A fundamental goal of current studies is to identify those somatic events arising in the variable landscape of PDA genomes that can be exploited for improved clinical outcomes. METHODS: We used DNA content flow sorting to identify and purify tumor nuclei of PDA samples from 50 patients. The genome of each sorted sample was profiled by oligonucleotide comparative genomic hybridization and targeted resequencing of STAG2. Transposon insertions within STAG2 in a KRAS (G12D)-driven genetically engineered mouse model of PDA were screened by RT-PCR. We then used a tissue microarray to survey STAG2 protein expression levels in 344 human PDA tumor samples and adjacent tissues. Univariate Kaplan Meier analysis and multivariate Cox Regression analysis were used to assess the association of STAG2 expression relative to overall survival and response to adjuvant therapy. Finally, RNAi-based assays with PDA cell lines were used to assess the potential therapeutic consequence of STAG2 expression in response to 18 therapeutic agents. RESULTS: STAG2 is targeted by somatic aberrations in a subset (4%) of human PDAs. Transposon-mediated disruption of STAG2 in a KRAS (G12D) genetically engineered mouse model promotes the development of PDA and its progression to metastatic disease. There was a statistically significant loss of STAG2 protein expression in human tumor tissue (Wilcoxon-Rank test) with complete absence of STAG2 staining observed in 15 (4.3%) patients. In univariate Kaplan Meier analysis nearly complete STAG2 positive staining (>95% of nuclei positive) was associated with a median survival benefit of 6.41 months (P = 0.031). The survival benefit of adjuvant chemotherapy was only seen in patients with a STAG2 staining of less than 95% (median survival benefit 7.65 months; P = 0.028). Multivariate Cox Regression analysis showed that STAG2 is an independent prognostic factor for survival in pancreatic cancer patients. Finally, we show that RNAi-mediated knockdown of STAG2 selectively sensitizes human PDA cell lines to platinum-based therapy. CONCLUSIONS: Based on these iterative findings we propose that STAG2 is a clinically significant tumor suppressor in PDA.

7.
Biochem Pharmacol ; 83(4): 452-61, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22100984

ABSTRACT

Aurora kinases are a family of mitotic kinases that play important roles in the tumorigenesis of a variety of cancers including pancreatic cancer. A number of Aurora kinase inhibitors (AKIs) are currently being tested in preclinical and clinical settings as anti-cancer therapies. However, the antitumor activity of AKIs in clinical trials has been modest. In order to improve the antitumor activity of AKIs in pancreatic cancer, we utilized a kinome focused RNAi screen to identify genes that, when silenced, would sensitize pancreatic cancer cells to AKI treatment. A total of 17 kinase genes were identified and confirmed as positive hits. One of the hits was the platelet-derived growth factor receptor, alpha polypeptide (PDGFRA), which has been shown to be overexpressed in pancreatic cancer cells and tumor tissues. Imatinib, a PDGFR inhibitor, significantly enhanced the anti-proliferative effect of ZM447439, an Aurora B specific inhibitor, and PHA-739358, a pan-Aurora kinase inhibitor. Further studies showed that imatinib augmented the induction of G2/M cell cycle arrest and apoptosis by PHA-739358. These findings indicate that PDGFRA is a potential mediator of AKI sensitivity in pancreatic cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , RNA, Small Interfering/metabolism , Antineoplastic Agents/therapeutic use , Aurora Kinase B , Aurora Kinases , Cell Line, Tumor , Drug Screening Assays, Antitumor , Gene Expression Profiling , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Pancreatic Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
8.
Mol Cancer Res ; 9(2): 173-82, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21169384

ABSTRACT

Oxaliplatin is widely used to treat colorectal cancer, as both adjuvant therapy for resected disease and palliative treatment of metastatic disease. However, a significant number of patients experience serious side effects, including prolonged neurotoxicity, from oxaliplatin treatment creating an urgent need for biomarkers of oxaliplatin response or resistance to direct therapy to those most likely to benefit. As a first step to improve selection of patients for oxaliplatin-based chemotherapy, we have conducted an in vitro cell-based small interfering RNA (siRNA) screen of 500 genes aimed at identifying genes whose loss of expression alters tumor cell response to oxaliplatin. The siRNA screen identified twenty-seven genes, which when silenced, significantly altered colon tumor cell line sensitivity to oxaliplatin. Silencing of a group of putative resistance genes increased the extent of oxaliplatin-mediated DNA damage and inhibited cell-cycle progression in oxaliplatin-treated cells. The activity of several signaling nodes, including AKT1 and MEK1, was also altered. We used cDNA transfection to overexpress two genes (LTBR and TMEM30A) that were identified in the siRNA screen as mediators of oxaliplatin sensitivity. In both instances, overexpression conferred resistance to oxaliplatin. In summary, this study identified numerous putative predictive biomarkers of response to oxaliplatin that should be studied further in patient specimens for potential clinical application. Diverse gene networks seem to influence tumor survival in response to DNA damage by oxaliplatin. Finally, those genes whose loss of expression (or function) is related to oxaliplatin sensitivity may be promising therapeutic targets to increase patient response to oxaliplatin.


Subject(s)
Biological Phenomena/genetics , Genomics/methods , Neoplasms/genetics , Neoplasms/pathology , Organoplatinum Compounds/pharmacology , Biological Phenomena/drug effects , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , DNA Damage/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Genes, Neoplasm/genetics , Humans , Models, Biological , Oxaliplatin , RNA, Small Interfering/metabolism , Reproducibility of Results , Signal Transduction/drug effects , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...