Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 720: 150101, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38749191

ABSTRACT

Poly(ADP-ribose) polymerases (PARPs) are critical to regulating cellular activities, such as the response to DNA damage and cell death. PARPs catalyze a reversible post-translational modification (PTM) in the form of mono- or poly(ADP-ribosyl)ation. This type of modification is known to form a ubiquitin-ADP-ribose (Ub-ADPR) conjugate that depends on the actions of Deltex family of E3 ubiquitin ligases (DTXs). In particular, DTXs add ubiquitin to the 3'-OH of adenosine ribose' in ADP-ribose, which effectively sequesters ubiquitin and impedes ubiquitin-dependent signaling. Previous work demonstrates DTX function for ubiquitination of protein-free ADPR, mono-ADP-ribosylated peptides, and ADP-ribosylated nucleic acids. However, the dynamics of DTX-mediated ubiquitination of poly(ADP-ribosyl)ation remains to be defined. Here we show that the ADPR ubiquitination function is not found in other PAR-binding E3 ligases and is conserved across DTX family members. Importantly, DTXs specifically target poly(ADP-ribose) chains for ubiquitination that can be cleaved by PARG, the primary eraser of poly(ADP-ribose), leaving the adenosine-terminal ADPR unit conjugated to ubiquitin. Our collective results demonstrate the DTXs' specific ubiquitination of the adenosine terminus of poly(ADP-ribosyl)ation and suggest the unique Ub-ADPR conjugation process as a basis for PARP-DTX control of cellular activities.


Subject(s)
Adenosine Diphosphate Ribose , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Humans , Adenosine Diphosphate Ribose/metabolism , Poly ADP Ribosylation , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Ubiquitin/metabolism , ADP-Ribosylation , HEK293 Cells
2.
PLoS One ; 16(6): e0254022, 2021.
Article in English | MEDLINE | ID: mdl-34191856

ABSTRACT

ADP-ribosylation is a key post-translational modification that regulates a wide variety of cellular stress responses. The ADP-ribosylation cycle is maintained by writers and erasers. For example, poly(ADP-ribosyl)ation cycles consist of two predominant enzymes, poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolase (PARG). However, historically, mechanisms of erasers of ADP-ribosylations have been understudied, primarily due to the lack of quantitative tools to selectively monitor specific activities of different ADP-ribosylation reversal enzymes. Here, we developed a new NUDT5-coupled AMP-Glo (NCAG) assay to specifically monitor the protein-free ADP-ribose released by ADP-ribosylation reversal enzymes. We found that NUDT5 selectively cleaves protein-free ADP-ribose, but not protein-bound poly- and mono-ADP-ribosylations, protein-free poly(ADP-ribose) chains, or NAD+. As a proof-of-concept, we successfully measured the kinetic parameters for the exo-glycohydrolase activity of PARG, which releases monomeric ADP-ribose, and monitored activities of site-specific mono-ADP-ribosyl-acceptor hydrolases, such as ARH3 and TARG1. This NCAG assay can be used as a general platform to study the mechanisms of diverse ADP-ribosylation reversal enzymes that release protein-free ADP-ribose as a product. Furthermore, this assay provides a useful tool to identify small-molecule probes targeting ADP-ribosylation metabolism and to quantify ADP-ribose concentrations in cells.


Subject(s)
ADP-Ribosylation , Adenosine Diphosphate Ribose/metabolism , Enzymes/metabolism , Amino Acids/metabolism , Glycoside Hydrolases/metabolism , Humans , Hydrolases/metabolism , Kinetics , Pyrophosphatases/metabolism
3.
Biochem Biophys Res Commun ; 527(3): 818-823, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32439163

ABSTRACT

Poly(ADP-ribosyl)ation (PARylation) regulates DNA damage response, chromatin structure, and cell-fate. Dynamic regulation of cellular PAR levels is crucial for the maintenance of genomic integrity and excessive cellular PAR activates a PAR-dependent cell death pathway. Thus, PAR serves as a cell-death signal; however, it has been debated how the protein-free PAR is generated. Here, we demonstrate that PAR glycohydrolases (PARGs) from mammals to bacteria have a robust endo-glycohydrolase activity, releasing protein-free PAR chains longer than three ADP-ribose units as early reaction products. Released PAR chains are transient and rapidly degraded to monomeric ADP-ribose, which is consistent with a short half-life of PAR during DNA damage responses. Computational simulations using a tri-ADP-ribose further support that PARG can efficiently bind to internal sites of PAR for the endo-glycosidic cleavage. Our collective results suggest PARG as a key player in producing protein-free PAR during DNA damage signaling and establish bacterial PARG as a useful tool to enrich short PAR chains that emerge as important reagents for biomedical research.


Subject(s)
Glycoside Hydrolases/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Glycoside Hydrolases/chemistry , Humans , Models, Molecular , Poly Adenosine Diphosphate Ribose/chemistry , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...