Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(13): eabq7585, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37000881

ABSTRACT

The elimination of aberrant inclusions is regarded as a therapeutic approach in neurodegeneration. In amyotrophic lateral sclerosis (ALS), mutations in proteins found within cytoplasmic condensates called stress granules (SGs) are linked to the formation of pathological SGs, aberrant protein inclusions, and neuronal toxicity. We found that inhibition of NEDP1, the enzyme that processes/deconjugates the ubiquitin-like molecule NEDD8, promotes the disassembly of physiological and pathological SGs. Reduction in poly(ADP-ribose) polymerase1 activity through hyper-NEDDylation is a key mechanism for the observed phenotype. These effects are related to improved cell survival in human cells, and in C. elegans, nedp1 deletion ameliorates ALS phenotypes related to animal motility. Our studies reveal NEDP1 as potential therapeutic target for ALS, correlated to the disassembly of pathological SGs.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Caenorhabditis elegans/genetics , Stress Granules , Ubiquitin , Phenotype
2.
Biochem Biophys Res Commun ; 612: 119-125, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35523049

ABSTRACT

Kinases represent one of the largest druggable families of proteins. Importantly, many kinases are aberrantly activated/de-activated in multiple organs during obesity, which contributes to the development of diabetes and associated diseases. Previous results indicate that the complex between Extracellular-regulated kinase 3 (ERK3) and Mitogen-Activated Protein Kinase (MAPK)-activated protein kinase 5 (MK5) suppresses energy dissipation and promotes fatty acids (FAs) output in adipose tissue and, therefore promotes obesity and diabetes. However, the therapeutic potential of targeting this complex at the systemic level has not been fully explored. Here we applied a translational approach to target the ERK3/MK5 complex in mice. Importantly, deletion of ERK3 in the whole body or administration of MK5-specific inhibitor protects against obesity and promotes insulin sensitivity. Finally, we show that the expression of ERK3 and MK5 correlates with the degree of obesity and that ERK3/MK5 complex regulates energy dissipation in human adipocytes. Altogether, we demonstrate that ERK3/MK5 complex can be targeted in vivo to preserve metabolic health and combat obesity and diabetes.


Subject(s)
Diabetes Mellitus , Protein Serine-Threonine Kinases , Animals , Intracellular Signaling Peptides and Proteins , Mice , Mitogen-Activated Protein Kinase 6/metabolism , Obesity
3.
Life Sci Alliance ; 4(8)2021 08.
Article in English | MEDLINE | ID: mdl-34145024

ABSTRACT

Members of the protein kinase D (PKD) family (PKD1, 2, and 3) integrate hormonal and nutritional inputs to regulate complex cellular metabolism. Despite the fact that a number of functions have been annotated to particular PKDs, their molecular targets are relatively poorly explored. PKD3 promotes insulin sensitivity and suppresses lipogenesis in the liver of animals fed a high-fat diet. However, its substrates are largely unknown. Here we applied proteomic approaches to determine PKD3 targets. We identified more than 300 putative targets of PKD3. Furthermore, biochemical analysis revealed that PKD3 regulates cAMP-dependent PKA activity, a master regulator of the hepatic response to glucagon and fasting. PKA regulates glucose, lipid, and amino acid metabolism in the liver, by targeting key enzymes in the respective processes. Among them the PKA targets phenylalanine hydroxylase (PAH) catalyzes the conversion of phenylalanine to tyrosine. Consistently, we showed that PKD3 is activated by glucagon and promotes glucose and tyrosine levels in hepatocytes. Therefore, our data indicate that PKD3 might play a role in the hepatic response to glucagon.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Glucagon/pharmacology , Hepatocytes/cytology , Protein Kinase C/metabolism , Proteomics/methods , Animals , Cells, Cultured , Fasting , Glucose/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Mice , Phenylalanine Hydroxylase/metabolism , Phosphorylation , Primary Cell Culture , Protein Interaction Maps , Tyrosine/metabolism
4.
Biomolecules ; 10(9)2020 08 29.
Article in English | MEDLINE | ID: mdl-32872540

ABSTRACT

The family of mitogen-activated protein kinases (MAPKs) consists of fourteen members and has been implicated in regulation of virtually all cellular processes. MAPKs are divided into two groups, conventional and atypical MAPKs. Conventional MAPKs are further classified into four sub-families: extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK1, 2 and 3), p38 (α, ß, γ, δ), and extracellular signal-regulated kinase 5 (ERK5). Four kinases, extracellular signal-regulated kinase 3, 4, and 7 (ERK3, 4 and 7) as well as Nemo-like kinase (NLK) build a group of atypical MAPKs, which are activated by different upstream mechanisms than conventional MAPKs. Early studies identified JNK1/2 and ERK1/2 as well as p38α as a central mediators of inflammation-evoked insulin resistance. These kinases have been also implicated in the development of obesity and diabetes. Recently, other members of conventional MAPKs emerged as important mediators of liver, skeletal muscle, adipose tissue, and pancreatic ß-cell metabolism. Moreover, latest studies indicate that atypical members of MAPK family play a central role in the regulation of adipose tissue function. In this review, we summarize early studies on conventional MAPKs as well as recent findings implicating previously ignored members of the MAPK family. Finally, we discuss the therapeutic potential of drugs targeting specific members of the MAPK family.


Subject(s)
Metabolic Diseases/enzymology , Mitogen-Activated Protein Kinase 3/metabolism , Animals , Humans , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 7/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Cancers (Basel) ; 11(12)2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31817924

ABSTRACT

While first discovered in immunoreceptor signaling, the Syk protein kinase behaves as a tumor and metastasis suppressor in epithelial cells. Its reduced expression in breast and other carcinomas is correlated with decreased survival and increased metastasis risk, but its action mechanism remains largely unknown. Using phosphoproteomics we found that Syk phosphorylated E-cadherin and α-, ß-, and p120-catenins on multiple tyrosine residues that concentrate at intercellular junctions. Increased Syk expression and activation enhanced E-cadherin/catenin phosphorylation, promoting their association and complex stability. In human breast cancer cells, Syk stimulated intercellular aggregation, E-cadherin recruitment and retention at adherens junctions, and promoted epithelial integrity, whereas it inhibited cell migration and invasion. Opposite effects were obtained with Syk knockdown or non-phosphorylatable mutant E-cadherin expression. Mechanistically, Syk stimulated the interaction of the E-cadherin/catenin complex with zonula occludens proteins and the actin cytoskeleton. Conditional Syk knockout in the lactating mouse mammary gland perturbed alveologenesis and disrupted E-cadherin localization at adherens junctions, corroborating the observations in cells. Hence, Syk is involved in the maintenance of the epithelial integrity of the mammary gland via the phosphorylation and stabilization of the E-cadherin/catenin adherens junction complex, thereby inhibiting cell migration and malignant tumor invasion.

SELECTION OF CITATIONS
SEARCH DETAIL
...