Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
EFSA J ; 21(5): e07990, 2023 May.
Article in English | MEDLINE | ID: mdl-37197560

ABSTRACT

Groundwater monitoring is the highest tier in the leaching assessment of plant protection products in the EU. The European Commission requested EFSA for a review by the PPR Panel of the scientific paper of Gimsing et al. (2019) on the design and conduct of groundwater monitoring studies. The Panel concludes that this paper provides many recommendations; however, specific guidance on how to design, conduct and evaluate groundwater monitoring studies for regulatory purposes is missing. The Panel notes that there is no agreed specific protection goal (SPG) at EU level. Also, the SPG has not yet been operationalised in an agreed exposure assessment goal (ExAG). The ExAG describes which groundwater needs to be protected, where and when. Because the design and interpretation of monitoring studies depends on the ExAG, development of harmonised guidance is not yet possible. The development of an agreed ExAG must therefore be given priority. A central question in the design and interpretation of groundwater monitoring studies is that of groundwater vulnerability. Applicants must demonstrate that the selected monitoring sites represent realistic worst-case conditions as specified in the ExAG. Guidance and models are needed to support this step. A prerequisite for the regulatory use of monitoring data is the availability of complete data on the use history of the products containing the respective active substances. Applicants must further demonstrate that monitoring wells are hydrologically connected to the fields where the active substance has been applied. Modelling in combination with (pseudo)tracer experiments would be the preferred option. The Panel concludes that well-conducted monitoring studies provide more realistic exposure assessments and can therefore overrule results from lower tier studies. Groundwater monitoring studies involve a high workload for both regulators and applicants. Standardised procedures and monitoring networks could help to reduce this workload.

2.
Environ Sci Technol ; 53(10): 5725-5732, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31017764

ABSTRACT

Many pesticides show a pronounced biphasic degradation in soil, typically with a faster initial phase, followed by a slower decline. For chiral compounds, a biphasic decline of the total concentration may result from enantioselective degradation. In this study with the chiral herbicide imazamox, biphasic degradation was observed in most of the 18 soils investigated. In neutral soils, degradation was, in fact, enantioselective with faster degradation of (+)-imazamox. In slightly acidic soils, differences between enantiomers were not pronounced, and in strongly acidic soils, degradation was again enantioselective, but with reversed preference. Additional experiments with pure enantiomers indicated no interconversion. Enantioselective degradation thus contributed to the biphasic decline of the total concentration in certain soils. However, this was not the only factor since degradation of the individual enantiomers was biphasic in itself. In addition to the observed correlation between enantioselectivity and pH, degradation was generally faster in neutral than in acidic soils with half-lives ranging from only 2 to >120 days. Half-lives were also determined for two known metabolites and a further chiral metabolite, the structure of which was characterized by high resolution tandem mass spectrometry. As for the parent compound, half-lives of the metabolites varied considerably in the different soils.


Subject(s)
Herbicides , Soil Pollutants , Hydrogen-Ion Concentration , Imidazoles , Soil , Stereoisomerism
3.
Environ Sci Technol ; 53(10): 5733-5740, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31017768

ABSTRACT

Imazamox is a chiral herbicide that, in laboratory experiments in the dark, exhibits pronounced enantioselective biodegradation in certain soils. Imazamox also shows rapid photodegradation. However, which processes are predominant in the field is not clear. We conducted a set of soil incubation experiments under natural sunlight (and corresponding dark controls), using enantioselective LC-MS/MS analysis as a probe to distinguish biodegradation and photodegradation. Under dark conditions, imazamox was degraded enantioselectively. In contrast, degradation was nonenantioselective and 2× faster when the soil was exposed to sunlight, suggesting that biodegradation (in the dark) and photodegradation (under sunlight) were the predominant degradation processes. We also investigated the effectiveness of strategies that were proposed to exclude photodegradation in field studies, covering of soil with sand or irrigation after herbicide application. The sand cover did not prevent photodegradation. On the contrary, degradation was 10× faster than in the dark and nonenantioselective. Computer simulations supported the explanation that imazamox was transported upward by capillary flow due to evaporation onto the sand surface, where it was rapidly photodegraded. Irrigation postponed but not completely prevented photodegradation. For mobile substances susceptible to photodegradation, upward transport to the soil surface thus needs to be considered when deriving rates for biodegradation from field studies.


Subject(s)
Herbicides , Soil Pollutants , Chromatography, Liquid , Imidazoles , Photolysis , Soil , Stereoisomerism , Tandem Mass Spectrometry
4.
EFSA J ; 16(8): e05382, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32626023

ABSTRACT

The EFSA Panel on Plant Protection Products and their Residues reviewed the guidance on how aged sorption studies for pesticides should be conducted, analysed and used in regulatory assessment. The inclusion of aged sorption is a higher tier in the groundwater leaching assessment. The Panel based its review on a test with three substances taken from a data set provided by the European Crop Protection Association. Particular points of attention were the quality of the data provided, the proposed fitting procedure of aged sorption experiments and the proposed method for combining results obtained from aged sorption studies and lower-tier studies on degradation and adsorption. Aged sorption was a relevant process in all cases studied. The test revealed that the guidance could generally be well applied and resulted in robust and plausible results. The Panel considers the guidance suitable for use in the groundwater leaching assessment after the recommendations in this Scientific Opinion have been implemented, with the exception of the use of field data to derive aged sorption parameters. The Panel noted that the draft guidance could only be used by experienced users because there is no software tool that fully supports the work flow in the guidance document. It is therefore recommended that a user-friendly software tool be developed. Aged sorption lowered the predicted concentration in groundwater. However, because aged sorption experiments may be conducted in different soils than lower-tier degradation and adsorption experiments, it cannot be guaranteed that the higher tier predicts lower concentrations than the lower tier, while lower tiers should be more conservative than higher tiers. To mitigate this problem, the Panel recommends using all available higher- and lower-tier data in the leaching assessment. The Panel further recommends that aged sorption parameters for metabolites be derived only from metabolite-dosed studies. The formation fraction can be derived from parent-dosed degradation studies, provided that the parent and metabolite are fitted with the best-fit model, which is the double first-order in parallel model in the case of aged sorption.

5.
J Agric Food Chem ; 64(33): 6407-15, 2016 Aug 24.
Article in English | MEDLINE | ID: mdl-27529118

ABSTRACT

Pesticide transport from seed dressings toward subsurface tile drains is still poorly understood. We monitored the neonicotinoid insecticides imidacloprid and thiamethoxam from sugar beet seed dressings in flow-proportional drainage water samples, together with spray applications of bromide and the herbicide S-metolachlor in spring and the fungicides epoxiconazole and kresoxim-methyl in summer. Event-driven, high first concentration maxima up to 2830 and 1290 ng/L for thiamethoxam and imidacloprid, respectively, were followed by an extended period of tailing and suggested preferential flow. Nevertheless, mass recoveries declined in agreement with the degradation and sorption properties collated in the groundwater ubiquity score, following the order bromide (4.9%), thiamethoxam (1.2%), imidacloprid (0.48%), kresoxim-methyl acid (0.17%), S-metolachlor (0.032%), epoxiconazole (0.013%), and kresoxim-methyl (0.003%), and indicated increased leaching from seed dressings compared to spray applications. Measured concentrations and mass recoveries indicate that subsurface tile drains contribute to surface water contamination with neonicotinoids from seed dressings.


Subject(s)
Environmental Monitoring , Groundwater/chemistry , Imidazoles/analysis , Insecticides/analysis , Nitro Compounds/analysis , Oxazines/analysis , Soil/chemistry , Thiazoles/analysis , Water Pollutants, Chemical/analysis , Agriculture , Beta vulgaris , Bromides/analysis , Chromatography, High Pressure Liquid , Epoxy Compounds/analysis , Herbicides/analysis , Methacrylates/analysis , Neonicotinoids , Phenylacetates/analysis , Seeds , Soil Pollutants , Spectrometry, Mass, Electrospray Ionization , Strobilurins , Thiamethoxam , Triazoles/analysis
6.
Pest Manag Sci ; 72(12): 2218-2230, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26876807

ABSTRACT

BACKGROUND: Convincing experimental evidence suggests increased sorption of pesticides on soil over time, which, so far, has not been considered in the regulatory assessment of leaching to groundwater. Recently, Beulke and van Beinum (2012) proposed a guidance on how to conduct, analyse and use time-dependent sorption studies in pesticide registration. The applicability of the recommended experimental set-up and fitting procedure was examined for two fungicides, penflufen and fluxapyroxad, in four soils during a 170 day incubation experiment. RESULTS: The apparent distribution coefficient increased by a factor of 2.5-4.5 for penflufen and by a factor of 2.5-2.8 for fluxapyroxad. The recommended two-site, one-rate sorption model adequately described measurements of total mass and liquid phase concentration in the calcium chloride suspension and the calculated apparent distribution coefficient, passing all prescribed quality criteria for model fit and parameter reliability. CONCLUSION: The guidance is technically mature regarding the experimental set-up and parameterisation of the sorption model for the two moderately mobile and relatively persistent fungicides under investigation. These parameters can be used for transport modelling in soil, thereby recognising the existence of the experimentally observed, but in the regulatory leaching assessment of pesticides not yet routinely considered phenomenon of time-dependent sorption. © 2016 Society of Chemical Industry.


Subject(s)
Amides/chemistry , Fungicides, Industrial/chemistry , Adsorption , Anilides , Models, Theoretical , Soil/chemistry , Soil Pollutants/chemistry
7.
Chemosphere ; 95: 470-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24210597

ABSTRACT

Veterinary antibiotics administered to livestock can be unintentionally released into the environment, for example by the application of manure to soils. The fate of such antibiotics in soils is mostly determined by sorption and degradation processes, including transformation. There is a need to further examine the combined transformation and sorption behavior of these emerging pollutants in soils. Long-term batch sorption experiments with the (14)C-radiolabeled antibiotic sulfadiazine enabled us to simultaneously trace the sorption and transformation dynamics of sulfadiazine. The parent compound and the transformation products were analyzed in the liquid phase and in the extracts from the solid phase after a sequential extraction. We found that of up to six transformation products were formed during degradation and that these products exhibited quite different dynamics in the two soils. Transformation products were formed rapidly and were extractable from the solid phase. We observed identical sets of the transformation products in both phases. The input concentration influenced the course of transformation of the parent substance. We present a detailed analysis including a mathematical description and derive regulatory kinetic endpoints for predicting environmental concentrations.


Subject(s)
Anti-Bacterial Agents/analysis , Models, Chemical , Soil Pollutants/analysis , Soil/chemistry , Sulfadiazine/analysis , Veterinary Drugs/analysis , Adsorption , Kinetics
8.
J Environ Qual ; 41(5): 1497-506, 2012.
Article in English | MEDLINE | ID: mdl-23099941

ABSTRACT

Understanding the long-term sequestration of veterinary antibiotics into soil fractions with different bioavailability is important in terms of assessing their eco-toxicological impact. We performed 60-d batch sorption experiments with radiolabeled sulfadiazine (SDZ) using samples from two agricultural soils. Sequential extraction with CaCl/MeOH (easily accessible fraction), microwave (residual fraction, RES), and combustion (nonextractable residues, NER) was used to quantify the sequestration dynamics of the C-derived SDZ-equivalent concentration. Multiple harsh extractions allowed us to mathematically extrapolate to the amount of SDZ equivalents that can be potentially extracted, resulting in halving the NER fraction after 60 d. A modified two-stage model with irreversible sorption combined with global parameter optimization was able to display the sequestration dynamics. We demonstrated this with sterilized samples in which no transformation of the parent compound was observed. This also showed that transformation was primarily biologically driven. These modeling results verified the procedure, which was then applied to nontreated samples from both soils to estimate effective parameter values for SDZ-derived equivalents. Observed initial sorption, to which up to 20% of the kinetic sorption sites attributed, was included in the model. Both the RES and NER fractions reached a sorption plateau, with NER occupying about 30% of the kinetic fraction (RES+NER) for all soils. The sorption and sequestration of SDZ were soil-specific and dominated by kinetics. Sequestration in the RES fraction was much slower (characteristic time: 60 d) than the redistribution in the NER fraction (characteristic time: <6 d). The work presented here contributes to the prediction of the dynamics of (bio-)availability.


Subject(s)
Anti-Infective Agents/analysis , Models, Chemical , Soil Pollutants/analysis , Sulfadiazine/analysis , Adsorption
9.
J Environ Qual ; 39(4): 1201-10, 2010.
Article in English | MEDLINE | ID: mdl-20830907

ABSTRACT

The irrigation or agricultural land with wastewater is increasingly practiced in many parts of the world as a consequence of growing populations and urbanization. The risks emerging from pharmaceuticals that are contained in wastewater for soils and groundwater have hardly been investigated. We studied leaching and effects of naproxen, ibuprofen, bezafibrate, diclofenac, gemfibrocil, clarithromycin, trimethoprim, clindamycin, erythromycin, and metoprolol in a soil column experiment simulating an irrigation event with 8.6 cm of wastewater containing 20 microg L(-1) or 2000 microg L(-1) of each compound or of erythromycin alone. The leached fraction of applied pharmaceuticals ranged from 0.1 +/- 0.1% (clarithromycin, 2000 microg L(-1)) to 130 +/- 41% (naproxen, 20 microg L(-1)) and tended to increase with decreasing K(d) or K(oc). Naproxen transport was similar to that of the tracer chloride. Ibuprofen was also hardly retarded (R = 1.20 +/- 0.18), but showed a higher degradation rate of 0.02 +/- 0.004 h(-1) (2000 microg L(-1)) than naproxen. The transport of a pulse of 2000 microg L(-1) of bezafibrate could be described with a retardation factor of 1.5 and a degradation rate of 0.033 h(-1). The application of erythromycin alone or of a cocktail of all pharmaceuticals significantly increased soil CO2 emissions by 50% 1 d after the application. There is a considerable risk that pharmaceuticals are leached to groundwater during wastewater irrigation.


Subject(s)
Aluminum Silicates/chemistry , Pharmaceutical Preparations/chemistry , Soil Pollutants/chemistry , Waste Disposal, Fluid/methods , Chlorides/chemistry , Clay , Environmental Monitoring , Mexico , Soil/analysis
10.
Environ Sci Technol ; 44(12): 4651-7, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20465301

ABSTRACT

The worldwide use of veterinary antibiotics poses a continuous threat to the environment. There is, however, a lack of mechanistic studies on sorption and transformation processes for environmental assessment in soils. Two-week batch sorption experiments were performed with the antibiotic sulfadiazine (SDZ) in the plow layer and the subsoil of a loamy sand and a silty loam. The sorption and transformation parameters of SDZ and its main transformation products N1-2-(4-hydroxypyrimidinyl) benzenesulfanilamide (4-OH-SDZ) and 4-(2-iminopyrimidin-1(2H)-yl)aniline (An-SDZ) were estimated using a global optimization algorithm. A two-stage, one-rate sorption model combined with a first-order transformation model adequately described the batch data. Sorption of SDZ was nonlinear, time-dependent, and affected by pH, with a higher sorption capacity for the loamy sand. Transformation of SDZ into 4-OH-SDZ occurred only in the liquid phase, with half-life values of 1 month in the plow layers and 6 months in the subsoils. Under the exclusion of light, An-SDZ was formed in substantial amounts in the silty loam only, with liquid phase half-life values of 2 to 3 weeks. Despite the rather large parameter uncertainties, which may be reduced using additional information obtained from sequential solid phase extraction, the proposed method provides a framework to assess the fate of antibiotics in soils.


Subject(s)
Environmental Restoration and Remediation/methods , Soil/analysis , Sulfadiazine/isolation & purification , Sulfadiazine/metabolism , Veterinary Drugs/isolation & purification , Veterinary Drugs/metabolism , Adsorption , Biodegradation, Environmental , Biotransformation , Carbon Radioisotopes , Kinetics , Models, Chemical , Sulfadiazine/chemistry , Time Factors , Veterinary Drugs/chemistry
11.
J Environ Qual ; 39(2): 654-66, 2010.
Article in English | MEDLINE | ID: mdl-20176838

ABSTRACT

Antibiotics, such as sulfadiazine (SDZ), may enter arable soil by spreading of manure of medicated husbandry or directly by the excrement of grazing animals. Knowledge of the fate of antibiotics in soils is crucial for assessing the environmental risk of these compounds, including possible transport to ground water. Kinetic sorption of (14)C-labeled SDZ (4-amino-N-pyrimidin-2-yl-benzenesulfonamide) was investigated using the batch technique. The batch sorption-desorption experiments were conducted at various concentration levels (0.044-13 mg L(-1) initial solute concentration) and time scales (0.75-272 d). Sorption of (14)C-SDZ in the investigated silty loam was time dependent and strongly nonlinear in the solution phase concentration. The time to reach an apparent sorption equilibrium was about 20 d. However, desorption was very slow, and 41 d were insufficient to reach the desorption equilibrium. An inverse modeling technique was used to identify relevant sorption processes of (14)C-SDZ during the batch experiments. Among the investigated two- and three-domain sorption models, adsorption and desorption of (14)C-SDZ were best described with a new model defining two sorption domains and four parameters. Whereas sorption in the first sorption domain was nonlinear and instantaneous, solute uptake in the second sorption domain was rate limited following first-order kinetics. Desorption followed the same rate law until an equilibrium distribution was reached. After that, desorption was assumed to be impossible due to partly irreversible sorption. Although the proposed model needs further validation, it contributes to the discussion on complex sorption processes of organic chemicals in soils.


Subject(s)
Anti-Infective Agents/chemistry , Models, Chemical , Soil/analysis , Sulfadiazine/chemistry , Adsorption
12.
J Environ Qual ; 36(2): 597-606, 2007.
Article in English | MEDLINE | ID: mdl-17332264

ABSTRACT

The flux of dissolved organic carbon (DOC) in soil facilitates transport of nutrients and contaminants in soil. There is little information on DOC fluxes and the relationship between DOC concentration and water flux in agricultural soils. The DOC fluxes and concentrations were measured during 2.5 yr using 30 automatic equilibrium tension plate lysimeters (AETPLs) at 0.4 m and 30 AETPLs at 1.20-m depth in a bare luvisol, previously used as an arable soil. Average annual DOC fluxes of the 30 AETPLS were 4.9 g C m(-2) y(-1) at 0.4 m and 2.4 g C m(-2) y(-1) at 1.2 m depth. The average leachate DOC concentrations were 17 mg C L(-1) (0.4 m) and 9 mg C L(-1) (1.2 m). The DOC concentrations were unrelated to soil moisture content or average temperature and rarely dropped below 9 mg C L(-1) (0.4 m) and 5 mg C L(-1) (1.2 m). The variability in cumulative DOC fluxes among the plates was positively related to leachate volume and not to average DOC concentrations at both depths. This suggests that water fluxes are the main determinants of spatial variability in DOC fluxes. However, the largest DOC concentrations were inversely proportional to the mean water velocity between succeeding sampling periods, suggesting that the maximal net DOC mobilization rate in the topsoil is limited. Elevated DOC concentrations, up to 90 mg C L(-1), were only observed at low water velocities, reducing the risks of DOC-facilitated transport of contaminants to groundwater. The study emphasizes that water flux and velocity are important parameters for DOC fluxes and concentrations.


Subject(s)
Carbon/analysis , Soil/analysis , Bromides , Water Movements
13.
J Contam Hydrol ; 89(1-2): 107-35, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17030463

ABSTRACT

Antibiotics, such as sulfadiazine, reach agricultural soils directly through manure of grazing livestock or indirectly through the spreading of manure or sewage sludge on the field. Knowledge about the fate of antibiotics in soils is crucial for assessing the environmental risk of these compounds, including possible transport to the groundwater. Transport of (14)C-labelled sulfadiazine was investigated in disturbed soil columns at a constant flow rate of 0.26 cm h(-1) near saturation. Sulfadiazine was applied in different concentrations for either a short or a long pulse duration. Breakthrough curves of sulfadiazine and the non-reactive tracer chloride were measured. At the end of the leaching period the soil concentration profiles were determined. The peak maxima of the breakthrough curves were delayed by a factor of 2 to 5 compared to chloride and the decreasing limbs are characterized by an extended tailing. However, the maximum relative concentrations differed as well as the eluted mass fractions, ranging from 18 to 83% after 500 h of leaching. To identify relevant sorption processes, breakthrough curves of sulfadiazine were fitted with a convective-dispersive transport model, considering different sorption concepts with one, two and three sorption sites. Breakthrough curves can be fitted best with a three-site sorption model, which includes two reversible kinetic and one irreversible sorption site. However, the simulated soil concentration profiles did not match the observations for all of the used models. Despite this incomplete process description, the obtained results have implications for the transport behavior of sulfadiazine in the field. Its leaching may be enhanced if it is frequently applied at higher concentrations.


Subject(s)
Models, Theoretical , Sulfadiazine/analysis , Water Movements , Adsorption , Chlorides/analysis , Models, Biological , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...