Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Marrow Transplant ; 56(10): 2336-2354, 2021 10.
Article in English | MEDLINE | ID: mdl-33976380

ABSTRACT

Detrimental graft-versus-host disease (GVHD) still remains a major cause of death in hematopoietic stem cell transplantation (HSCT). The recently explored depletion of naive cells from mobilized grafts (CD45RA depletion) has shown considerable promise, yet is unable to eliminate the incidence of GVHD. Analysis of CD45RA-depleted haploidentical mixed lymphocytes culture (haplo-MLC) revealed insufficient suppression of alloresponses in the CD4+ compartment and identified CD276 as a marker for alloreactive memory Th1 T cells. Conclusively, depleting CD276+ cells from CD45RA-depleted haplo-MLC significantly attenuated alloreactivity to recipient cells while increasing antiviral reactivity and maintaining anti-third party reactivity in vitro. To evaluate these findings in vivo, bulk, CD45RA-depleted, or CD45RA/CD276-depleted CD4+ T cells from HLA-DR4negative healthy humans were transplanted into NSG-Ab°DR4 mice, a sensitive human allo-GVHD model. Compellingly, CD45RA/CD276-depleted grafts from HLA-DR4negative donors or in vivo depletion of CD276+ cells after transplant of HLA-DR4negative memory CD4 T cells significantly delay the onset of GVHD symptoms and significantly alleviate its severity in NSG-Ab°DR4 mice. The clinical courses correlated with diminished Th1-cytokine secretion and downregulated CXCR6 expression of engrafted peripheral T cells. Collectively, mismatched HLA-mediated GVHD can be controlled by depleting recipient-specific CD276+ alloreacting T cells from the graft, highlighting its application in haplo-HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Immunologic Memory , Lymphocyte Depletion , Mice , T-Lymphocytes
2.
BMC Pediatr ; 19(1): 470, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31791281

ABSTRACT

After publication of the original article (1), it was brought to our attention that references 24 and 31 are inappropriately cited in the article.

3.
BMC Pediatr ; 19(1): 346, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604460

ABSTRACT

BACKGROUND: DNA ligase IV deficiency is a rare autosomal recessive disorder caused by hypomorphic mutations in the DNA ligase IV (LIG4) gene. DNA ligase IV is an essential protein for the development of a healthy immune system as well as for the protection of genomic integrity. Apart from typical stigmata, patients with DNA ligase IV deficiency are characterized by progressive bone marrow failure and a predisposition to malignancy. To our knowledge this reported case is the first description of two brothers with ligase IV deficiency who are treated with different hematopoietic stem cell transplantation (HSCT) regimens resulting in vastly divergent outcomes. CASE PRESENTATION: The cases of two brothers suffering from severe recurrent infections and growth retardation are described. The laboratory findings showed pancytopenia with significant lymphopenia. The two boys were diagnosed with DNA ligase IV deficiency, associated with severe combined immunodeficiency (SCID). Both patients received HSCT from two different matched unrelated donors (MUD) at the age of 33 and 18 months. The older brother succumbed post-transplant due to fatal side-effects 143 days after allogeneic HSCT. The younger brother - conditioned with a different regimen - received a T cell depleted graft 4 months later. No severe side-effects occurred, neither post-transplant nor in the following years. Ten years after HSCT the patient is well off, living a normal life and attending a regular high school. His immune system is fully reconstituted, resulting in a maximum of T cell receptor (TCR) diversity, which is a prerequisite for immune competence. However, he still suffers from microcephaly, dwarfism and dystrophy. CONCLUSIONS: This case report gives an example of a successful HSCT as a treatment option in a genetic disorder such as ligase IV deficiency, using a rather mild conditioning regimen. Further studies are required to determine the viability and efficacy of this treatment option.


Subject(s)
DNA Ligase ATP/deficiency , Hematopoietic Stem Cell Transplantation/methods , Severe Combined Immunodeficiency/complications , Siblings , Transplantation Conditioning/methods , Child, Preschool , Fatal Outcome , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Infant , Male , Severe Combined Immunodeficiency/immunology , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...