Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Screen ; 15(6): 609-22, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20460250

ABSTRACT

Posttranscriptional regulation of gene expression is an elaborate and intricate process, constituting an important mechanism for the control of protein expression. During its existence, mRNA is escorted by proteins and other RNAs, which control the maturation, transportation, localization, translational efficiency, and ultimately its degradation. Without changes at the transcription level, mRNA steady-state levels can vary dramatically by just small changes in mRNA stability. By influencing the metabolism of specific mRNAs, the abundance of specific mRNAs can be controlled in organisms from bacteria to mammals. In eukaryotic cells, the control of mRNA stability is exerted through specific cis-acting elements (sequence-specific control elements) and trans-acting factors (mRNA binding proteins and some miRNAs). mRNA stability appears to be a key regulator in controlling the expression of many proteins. Dysregulation of mRNA stability has been associated with human diseases, including cancer, inflammatory disease, and Alzheimer's. These observations suggest that modulating the stability of specific mRNAs may represent a viable strategy for pharmaceutical intervention. The literature already describes several compounds that influence mRNA stability. Measuring mRNA stability by conventional methods is labor intensive and time-consuming. However, several systems have been described that can be used to screen for modulators of mRNA levels in a high-throughput format. Thus, these assay systems offer a novel approach for screening targets that at present appear to be poorly "drugable." This review describes the utility of mRNA stability as a novel approach to drug discovery, focusing on assay methods and tool compounds available to monitor mRNA stability. The authors describe mRNA stability assays and issues related to this approach.


Subject(s)
Biological Assay/methods , Drug Discovery/methods , RNA Stability/genetics , Drug Evaluation, Preclinical , Humans
2.
Genomics ; 90(6): 723-32, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17936575

ABSTRACT

The AU-rich element (ARE) is a stability determinant found in the 3' UTR of a number of short-lived mRNAs. The best characterized ARE is the Shaw-Kamen (SK) box or AUUUA motif. Previously, a fungal metabolite, radicicol analog A (RAA), was shown to destabilize SK box-containing mRNAs based on 16 mRNAs examined [T. Kastelic et al., Cytokine 8 (1996) 751-761]. Using serial analysis of gene expression (SAGE) to examine the global effect of RAA on mRNA expression in interferon-gamma/lipopolysaccharide-stimulated THP-1 human monocytes, we observed that the expression level of greater than 99% of the SAGE tags was unchanged by RAA treatment and only 34 of the 17,608 unique tags annotated were reduced (p< or =0.0001). RAA destabilized approximately half of the down-regulated transcripts. Whereas all the destabilized mRNAs possessed at least one SK box, for transcripts not destabilized but nonetheless down-regulated, RAA appears to function by a SK box-independent mechanism not currently understood.


Subject(s)
Macrolides/pharmacology , RNA Stability/drug effects , RNA, Messenger/metabolism , 3' Untranslated Regions , Base Sequence , Cell Line , DNA Primers/genetics , Down-Regulation/drug effects , Fungi/metabolism , Gene Expression/drug effects , Humans , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrolides/chemistry , Macrolides/metabolism , Monocytes/drug effects , Monocytes/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...