Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20236943

ABSTRACT

ImportanceSARS-CoV-2 genomic variants impacts the overall sensitivity of COVID-19 diagnosis, leading to false-negative diagnosis and the continued spread of the virus. ObjectiveTo evaluate how nucleotide variability in target primer binding sites of the SARS-CoV-2 genomes may impact diagnosis using different recommended primer/probe sets, as well as to suggest the best primer/probes for diagnosis. DesignWe downloaded 105,118 public SARS-CoV-2 genomes from GISAID (Sept, 25th, 2020), removed genomes of apparent worst quality (genome length <29kb and/or >5% ambiguous bases) and missing metadata, and performed an analysis of complementarity for the 13 most used diagnostic primers/probe sets for RT-PCR detection. We calculated the N rate and % of genome recovery, with all primer/probe-sets considering viral origin and clade. Results: Our findings indicate that currently, the Paris_nCoV-IP2, -IP4 and WHO|E_Sarbeco primer/probe sets for COVID-19, to perform the best diagnostically worldwide, recovering >99.5% of the good quality SARS-CoV-2 genomes from GISAID, with no mismatches. The Chinese_CDC|2019-nCoV-NP primer/probe set, among the first to be designed during the pandemic, was the most susceptible to currently most abundant SARS-CoV-2 variants. Mismatches encompassing the binding sites for this set are more frequent in Clade-GR and are highly prevalent in over 30 countries globally, including Brazil and India, two of the hardest hit countries. Conclusions: Detection of SARS-CoV-2 in patients may be hampered by significant variability in parts of the viral genome that are targeted by some widely used primer sets. The geographic distribution of different viral clades indicates that continuous assessment of primer sets via sequencing-based surveillance and viral evolutionary analysis is critical to accurate diagnostics. This study highlights sequence variance in target regions that may reduce the efficiency of primer:target hybridization that in turn may lead to the undetected spread of the virus. As such, due to this variance, the Chinese_CDC|2019-nCoV-NP-set should be used with caution, or avoided, especially in countries with high prevalence of the GR clade. Key Points QuestionHow variable are the binding-sites of primers/probes used for COVID-19 diagnosis? FindingsWe investigated nucleotide variations in primer-binding sites used for COVID-19 diagnosis, in 93,143 SARS-CoV-2 genomes, and found primer sets targeting regions of increasingly nucleotide variance over time, such as the Chinese_CDC|2019-nCoV-NP. The frequency of these variations is higher in Clade-GR whose frequency is increasing worldwide. Paris_nCoV-IP2, IP4 and WHO|E_Sarbeco performed best. MeaningWe suggest the use of some sets to be halted and reinforce the importance of a continuous surveillance of SARS-CoV-2 variations to prompt the use of the best primers.

2.
Sci Rep ; 10(1): 17047, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046790

ABSTRACT

Given our vast lignocellulosic biomass reserves and the difficulty in bioprocessing them without expensive pretreatment and fuel separation steps, the conversion of lignocellulosic biomass directly into electricity would be beneficial. Here we report the previously unexplored capabilities of thermophilic Geobacillus sp. strain WSUCF1 to generate electricity directly from such complex substrates in microbial fuel cells. This process obviates the need for exogenous enzymes and redox mediator supplements. Cyclic voltammetry and chromatography studies revealed the electrochemical signatures of riboflavin molecules that reflect mediated electron transfer capabilities of strain WSUCF1. Proteomics and genomics analysis corroborated that WSUCF1 biofilms uses type-II NADH dehydrogenase and demethylmenaquinone methyltransferase to transfer the electrons to conducting anode via the redox active pheromone lipoproteins localized at the cell membrane.


Subject(s)
Bioelectric Energy Sources , Electricity , Geobacillus/metabolism , Lignin/metabolism , Biomass
3.
Preprint in English | medRxiv | ID: ppmedrxiv-20172668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019, is a respiratory virus primarily transmitted from person to person through inhalation of droplets or aerosols, laden with viral particles. However, as some studies have shown, virions can remain infectious for up to 72 hours on surfaces, which can lead to transmission through contact. For this reason, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end (E2E) study showed that the effective combination of monitoring SARS-CoV-2 on surfaces include using an Isohelix swab as a collection tool, DNA/RNA Shield as a preservative, an automated system for RNA extraction, and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) as the detection assay. Using this E2E approach, this study showed that, in some cases, SARS-CoV-2 viral standards were still recovered from surfaces as detected by RT-qPCR for as long as eight days even after bleach treatment. Additionally, debris associated with specific built environment surfaces appeared to negatively impact the recovery of RNA, with Amerstat inhibition as high as 90% when challenged with an inactivated viral control. Overall, it was determined that this E2E protocol required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from test surfaces. When this method was employed to evaluate 368 samples collected from various built environmental surfaces, all samples tested negative, indicating that the surfaces were either void of virus or below the detection limit of the assay. ImportanceThe ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus responsible for coronavirus disease 2019; COVID-19) pandemic has led to a global slow down with far reaching financial and social impacts. The SARS-CoV-2 respiratory virus is primarily transmitted from person to person through inhalation of infected droplets or aerosols. However, some studies have shown virions can remain infectious on surfaces for days, and can lead to human infection from contact with infected surfaces. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end study showed that the effective combination of monitoring SARS-CoV-2 on surfaces required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from surfaces. This comprehensive study can provide valuable information regarding surface monitoring of various materials as well as the capacity to retain viral RNA and allow for effective disinfection.

5.
Genomics & Informatics ; : 249-255, 2012.
Article in English | WPRIM (Western Pacific) | ID: wpr-11756

ABSTRACT

In this study, fosmid cloning strategies were used to assess the microbial populations in water from the International Space Station (ISS) drinking water system (henceforth referred to as Prebiocide and Tank A water samples). The goals of this study were: to compare the sensitivity of the fosmid cloning strategy with that of traditional culture-based and 16S rRNA-based approaches and to detect the widest possible spectrum of microbial populations during the water purification process. Initially, microbes could not be cultivated, and conventional PCR failed to amplify 16S rDNA fragments from these low biomass samples. Therefore, randomly primed rolling-circle amplification was used to amplify any DNA that might be present in the samples, followed by size selection by using pulsed-field gel electrophoresis. The amplified high-molecular-weight DNA from both samples was cloned into fosmid vectors. Several hundred clones were randomly selected for sequencing, followed by Blastn/Blastx searches. Sequences encoding specific genes from Burkholderia, a species abundant in the soil and groundwater, were found in both samples. Bradyrhizobium and Mesorhizobium, which belong to rhizobia, a large community of nitrogen fixers often found in association with plant roots, were present in the Prebiocide samples. Ralstonia, which is prevalent in soils with a high heavy metal content, was detected in the Tank A samples. The detection of many unidentified sequences suggests the presence of potentially novel microbial fingerprints. The bacterial diversity detected in this pilot study using a fosmid vector approach was higher than that detected by conventional 16S rRNA gene sequencing.


Subject(s)
Biomass , Bradyrhizobium , Burkholderia , Clone Cells , Cloning, Organism , Dermatoglyphics , DNA , DNA, Ribosomal , Drinking , Drinking Water , Electrophoresis, Gel, Pulsed-Field , Genes, rRNA , Groundwater , Mesorhizobium , Nitrogen , Pilot Projects , Plant Roots , Polymerase Chain Reaction , Ralstonia , Soil , Water , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...