Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 111(24): 243201, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24483657

ABSTRACT

We present an experimental determination of the 2p3d(1Po)→1s3d(1De) x-ray line emitted from He-like Si, S, and Cl projectile ions, excited in collisions with thin carbon foils, using a high-resolution bent-crystal spectrometer. A good agreement between the observation and state-of-the-art relativistic calculations using the multiconfiguration Dirac-Fock formalism including the Breit interaction and QED effects implies the dominance of fluorescent decay over the autoionization process for the 2p3d(^{1}P^{o}) state of He-like heavy ions. This is the first observation of the fluorescence-active doubly excited states in He-like Si, S, and Cl ions.

2.
Rev Sci Instrum ; 83(7): 073111, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22852675

ABSTRACT

The x-ray bremsstrahlung spectrum emitted by the electron population in a 14.5 GHz ECR plasma source has been measured using a NaI(Tl) detector, and hence the electron temperature of the higher energy electron population in the plasma has been determined. The x-ray spectra for Ne and Ar gases have been systematically studied as a function of inlet gas pressure from 7 × 10(-7) mbar to 7 × 10(-5) mbar and for input microwave power ∼1 W to ∼300 W. At the highest input power and optimum pressure conditions, the end point bremsstrahlung energies are seen to reach ∼700 keV. The estimated electron temperatures (T(e)) were found to be in the range 20 keV-80 keV. The T(e) is found to be peaking at a pressure of 1 × 10(-5) mbar for both gases. The T(e) is seen to increase with increasing input power in the intermediate power region, i.e., between 100 and 200 W, but shows different behaviour for different gases in the low and high power regions. Both gases show very weak dependence of electron temperature on inlet gas pressure, but the trends in each gas are different.

SELECTION OF CITATIONS
SEARCH DETAIL
...