Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters










Publication year range
1.
Front Psychiatry ; 13: 842003, 2022.
Article in English | MEDLINE | ID: mdl-35356722

ABSTRACT

Our previous studies documented that interleukin-15 receptor α (IL-15Rα) knockout (KO) mice exhibited hyperactivity, memory impairment, and desperate behavior, which are core features of schizophrenia and depression. Due to the overlapping symptomology and pathogenesis observed for schizophrenia and depression, the present study attempted to determine whether IL-15Rα was associated with the risk of schizophrenia or depression. One hundred fifty-six participants, including 63 schizophrenia patients, 29 depressive patients, and 64 age-matched healthy controls, were enrolled in the study. We investigated the circulating levels of soluble IL-15Rα and analyzed potential links between the IL-15Rα levels and clinical symptoms present in schizophrenia or depressive patients. We observed reduced serum IL-15Rα levels in schizophrenia patients, but not depressive patients compared with controls. Moreover, a significant negative association was observed between the circulating IL-15Rα levels and excited phenotypes in the schizophrenia patients. The IL-15Rα KO mice displayed pronounced pre-pulse inhibition impairment, which was a typical symptom of schizophrenia. Interestingly, the IL-15Rα KO mice exhibited a remarkable elevation in the startle amplitude in the startle reflex test compared to wild type mice. These results demonstrated that serum levels of soluble IL-15Rα were reduced in schizophrenia and highlighted the relationship of IL-15Rα and the excited phenotype in schizophrenia patients and mice.

2.
Front Neurosci ; 14: 582279, 2020.
Article in English | MEDLINE | ID: mdl-33613171

ABSTRACT

BACKGROUND: Previous studies of the functions of IL15Rα have been limited to immune activities and skeletal muscle development. Immunological factors have been identified as one of the multiple causes of psychosis, and neurological symptoms have been described in IL15Rα knockout (KO) mice. Seeking to explore possible mechanisms for this in the IL15Rα-/- mouse brain, we analyzed gene expression patterns in the cortex and hippocampus using the RNA-seq technique. METHODS: IL15Rα KO mice were generated and littermate wildtype (WT) mice were used as a control group. A Y-maze was used to assess behavior differences between the two groups. The cortex and hippocampus of 3-month-old male mice were prepared and RNA-seq and transcriptome analysis were performed by gene set enrichment analysis (GSEA). RESULTS: Compared with the WT group, IL15Rα KO animals showed higher speed in the novel arm and more entrance frequency in the old arm in the Y-maze experiment. GSEA indicated that 18 pathways were downregulated and 13 pathways upregulated in both cortex and hippocampus from the GO, KEGG, and Hallmark gene sets. The downregulated pathways formed three clusters: respiratory chain and electron transport, regulation of steroid process, and skeletal muscle development. CONCLUSION: IL15Rα KO mice exhibit altered expression of multiple pathways, which could affect many functions of the brain. Lipid biosynthesis and metabolism in the central nervous system (CNS) should be investigated to provide insights into the effect of IL15Rα on psychosis in this murine model.

3.
Curr Mol Med ; 19(8): 560-569, 2019.
Article in English | MEDLINE | ID: mdl-31244423

ABSTRACT

BACKGROUND: Schizophrenia is a complex and debilitating mental disorder with strong heritability. Its pathogenesis involves immune dysregulation. Interleukin 15 and interleukin 15 receptor alpha(IL-15Rα) are classical immune molecules. They also help maintain normal brain function, leading to our hypothesis that IL-15Rα gene(IL- 15RA) variants contribute to the pathogenesis of schizophrenia. OBJECTIVE: We determine whether the genetic variants of IL-15RA are associated with the development and progression of schizophrenia and whether IL-15RA single nucleotide polymorphism(SNP) plays a key role in downstream signaling transduction. METHODS AND RESULTS: We sequenced IL-15RA exon from 132 Chinese schizophrenic patients and identified a rare variant(rs528238821) in a patient diagnosed with catatonic schizophrenia and ankylosing spondylitis(AS). We overexpressed this missense variant in cells driven by pBI-CMV vector. The cells showed attenuated STAT3 phosphorylation in response to interleukin15. CONCLUSION: IL-15RA mutation is rare in schizophrenic patients but interfered with IL- 15Rα intracellular signal transduction. Given the similarity of symptoms of catatonic schizophrenia and the known phenotype of IL-15Rα knockout mice, gene variation might offer diagnostic value for sub-types of schizophrenia.


Subject(s)
Interleukin-15 Receptor alpha Subunit/genetics , Mutation, Missense , Point Mutation , Polymorphism, Single Nucleotide , Schizophrenia, Catatonic/genetics , Schizophrenia, Paranoid/genetics , Amino Acid Substitution , Animals , Asian People/genetics , Exons/genetics , HEK293 Cells , Humans , Interleukin-15/physiology , Interleukin-15 Receptor alpha Subunit/deficiency , Interleukin-15 Receptor alpha Subunit/physiology , Loss of Function Mutation , Male , Mice, Knockout , Middle Aged , Pedigree , Phosphorylation , Protein Processing, Post-Translational , Recombinant Proteins/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Spondylitis, Ankylosing/genetics
4.
Sci Rep ; 9(1): 561, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30728442

ABSTRACT

Brain aging and Alzheimer's disease both demonstrate the accumulation of beta-amyloid protein containing "plaques" and tau protein containing "tangles" that contribute to accelerated memory loss and cognitive decline. In the present investigation we identified a specific plant extract and its constituents as a potential alternative natural solution for preventing and reducing both brain "plaques and tangles". PTI-00703 cat's claw (Uncaria tomentosa from a specific Peruvian source), a specific and natural plant extract from the Amazon rain forest, was identified as a potent inhibitor and reducer of both beta-amyloid fibrils (the main component of "plaques") and tau protein paired helical filaments/fibrils (the main component of "tangles"). PTI-00703 cat's claw demonstrated both the ability to prevent formation/aggregation and disaggregate preformed Aß fibrils (1-42 and 1-40) and tau protein tangles/filaments. The disaggregation/dissolution of Aß fibrils occurred nearly instantly when PTI-00703 cat's claw and Aß fibrils were mixed together as shown by a variety of methods including Thioflavin T fluorometry, Congo red staining, Thioflavin S fluorescence and electron microscopy. Sophisticated structural elucidation studies identified the major fractions and specific constituents within PTI-00703 cat's claw responsible for both the observed "plaque" and "tangle" inhibitory and reducing activity. Specific proanthocyanidins (i.e. epicatechin dimers and variants thereof) are newly identified polyphenolic components within Uncaria tomentosa that possess both "plaque and tangle" reducing and inhibitory activity. One major identified specific polyphenol within PTI-00703 cat's claw was epicatechin-4ß-8-epicatechin (i.e. an epicatechin dimer known as proanthocyanidin B2) that markedly reduced brain plaque load and improved short-term memory in younger and older APP "plaque-producing" (TASD-41) transgenic mice (bearing London and Swedish mutations). Proanthocyanidin B2 was also a potent inhibitor of brain inflammation as shown by reduction in astrocytosis and gliosis in TASD-41 transgenic mice. Blood-brain-barrier studies in Sprague-Dawley rats and CD-1 mice indicated that the major components of PTI-00703 cat's claw crossed the blood-brain-barrier and entered the brain parenchyma within 2 minutes of being in the blood. The discovery of a natural plant extract from the Amazon rain forest plant (i.e. Uncaria tomentosa or cat's claw) as both a potent "plaque and tangle" inhibitor and disaggregator is postulated to represent a potential breakthrough for the natural treatment of both normal brain aging and Alzheimer's disease.


Subject(s)
Amyloid/metabolism , Brain/drug effects , Neurofibrillary Tangles/metabolism , Plant Extracts/pharmacology , Plaque, Amyloid/drug therapy , Proanthocyanidins/pharmacology , Animals , Brain/pathology , Cat's Claw/metabolism , Female , Male , Mice , Mice, Transgenic , Rats , Rats, Sprague-Dawley , tau Proteins/metabolism
5.
Neuroscientist ; 23(2): 124-136, 2017 04.
Article in English | MEDLINE | ID: mdl-26969345

ABSTRACT

Sleep and its disorders are known to affect the functions of essential organs and systems in the body. However, very little is known about how the blood-brain barrier (BBB) is regulated. A few years ago, we launched a project to determine the impact of sleep fragmentation and chronic sleep restriction on BBB functions, including permeability to fluorescent tracers, tight junction protein expression and distribution, glucose and other solute transporter activities, and mediation of cellular mechanisms. Recent publications and relevant literature allow us to summarize here the sleep-BBB interactions in five sections: (1) the structural basis enabling the BBB to serve as a huge regulatory interface; (2) BBB transport and permeation of substances participating in sleep-wake regulation; (3) the circadian rhythm of BBB function; (4) the effect of experimental sleep disruption maneuvers on BBB activities, including regional heterogeneity, possible threshold effect, and reversibility; and (5) implications of sleep disruption-induced BBB dysfunction in neurodegeneration and CNS autoimmune diseases. After reading the review, the general audience should be convinced that the BBB is an important mediating interface for sleep-wake regulation and a crucial relay station of mind-body crosstalk. The pharmaceutical industry should take into consideration that sleep disruption alters the pharmacokinetics of BBB permeation and CNS drug delivery, being attentive to the chrono timing and activation of co-transporters in subjects with sleep disorders.


Subject(s)
Autoimmune Diseases of the Nervous System/physiopathology , Biological Transport/physiology , Blood-Brain Barrier/physiology , Circadian Rhythm/physiology , Neurodegenerative Diseases/physiopathology , Sleep Deprivation/physiopathology , Sleep/physiology , Wakefulness/physiology , Animals , Autoimmune Diseases of the Nervous System/metabolism , Blood-Brain Barrier/metabolism , Humans , Neurodegenerative Diseases/metabolism , Sleep Deprivation/metabolism
6.
CNS Neurol Disord Drug Targets ; 15(9): 1118-1128, 2016.
Article in English | MEDLINE | ID: mdl-27658512

ABSTRACT

Pertinent to pandemic obesity, the discovery of endogenous peptides that affect the ingestion of food has led to the question of how these ingestive peptides exert their actions in the brain. Whereas peripheral sources provide a ready reserve, the availability of ingestive peptides to their central nervous system targets can be regulated by the blood-brain barrier (BBB). Some of the peptides/polypeptides are transported by saturable mechanisms from blood to brain. Examples include leptin, insulin, mahogany, and pancreatic polypeptide. Some enter the brain by passive diffusion, such as neuropeptide Y, orexin A, cocaine- and amphetamine-regulated transcript, cyclo His-Pro, and amylin. Some others may have essentially no penetration of the BBB; this class includes agouti-related protein, melanin-concentrating hormone, and urocortin. The regulatory function of the BBB can be seen in various physiological states. Hyperglycemia may upregulate transport systems for leptin, urocortin, and galanin-like peptide, whereas fasting can down-regulate those for leptin and galanin-like peptide. Thus, the BBB plays a dynamic role in modulating the passage of ingestive peptides from blood to brain.


Subject(s)
Blood-Brain Barrier/metabolism , Eating/physiology , Animals , Humans
7.
CNS Neurol Disord Drug Targets ; 15(9): 1139-1150, 2016.
Article in English | MEDLINE | ID: mdl-27658513

ABSTRACT

Here we summarize three aspects of our understanding of the interactions of cytokines and neurotrophic peptides/proteins with the blood-brain and bloodspinal cord barriers (BBB): (a) pharmacokinetic analysis that has been reported for native cytokines and neurotrophic peptides/proteins; (b) landmark work on conjugated proteins to enhance their delivery across the normal BBB; and (c) regulatory changes under pathophysiological conditions in rodents, particularly after spinal cord injury (SCI). First, though the BBB restricts the permeation of large proteins, some cytokines and neurotrophic peptides/proteins in the periphery can reach the central nervous system (CNS) by specific transport systems. Moreover, SCI and some other disease processes may regulate these transport systems. The significance of studies of the transport systems is obvious because of the biological impact of these molecules on the CNS in health and disease. We have characterized the pharmacokinetic characteristics of some stable cytokines and neurotrophic peptides/proteins in mice after intravenous administration and also in the setting of in situ brain perfusion. In the particular case of SCI, there are time- and regionspecific changes of BBB permeability and transport systems. Tumor necrosis factor-α, a cytokine with dual actions in regeneration of the spinal cord, has a slow basal influx into the brain and spinal cord. After SCI, the increase in the entry of tumor necrosis factor-α to the CNS differs from leakage after BBB disruption and is related to upregulation of the transport system in a unique temporal and regional pattern. Overall, the permeation of cytokines across the BBB can be mediated by specific transport systems. The regulation of transport in pathophysiological conditions affects the extent of neuroinflammation and is implicated in neuroregeneration.


Subject(s)
Cytokines/metabolism , Spinal Cord Injuries/metabolism , Animals , Humans
8.
Chronobiol Int ; 33(5): 553-60, 2016.
Article in English | MEDLINE | ID: mdl-27078501

ABSTRACT

Autophagy is essential for normal cellular survival and activity. Circadian rhythms of autophagy have been studied in several peripheral organs but not yet reported in the brain. Here, we measured the circadian rhythm of autophagy-related proteins in mouse hippocampus and tested the effect of sleep fragmentation (SF). Expressions of the autophagy-related proteins microtubule-associated protein 1 light chain 3 (LC3) and beclin were determined by western blotting and immunohistochemistry. Both the hippocampal LC3 signal and the ratio of its lipid-conjugated form LC3-II to its cytosolic form LC3-I showed a 24 h rhythm. The peak was seen at ZT6 (1 pm) and the nadir at ZT16 (1 am). The LC3 immunoreactivity in hippocampal CA1 pyramidal neurons also distributed differently, with more diffuse cytoplasmic appearance at ZT16. Chronic SF had a mild effect to disrupt the 24 h rhythm of LC3 and beclin expression. Interestingly, a greater effect of SF was seen after 24 h of recovery sleep when LC3-II expression was attenuated at both the peak and trough of circadian activities. Overall, the results show for the first time that the hippocampus has a distinct rhythm of autophagy that can be altered by SF.


Subject(s)
Autophagy/physiology , Circadian Rhythm/physiology , Hippocampus/metabolism , Sleep Deprivation/metabolism , Animals , Immunohistochemistry/methods , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Sleep/physiology
9.
J Mol Neurosci ; 56(4): 829-839, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25687329

ABSTRACT

To test the hypothesis that astrocytic leptin signaling induces an overall potentiation of the neuronal response to leptin, we generated a new line of astrocyte-specific leptin receptor knockout (ALKO-Δ1) mice in which no leptin receptor is expressed in astrocytes. Corresponding to cell-specific Cre recombinase expression in hypothalamic astrocytes but not neurons, this new strain of ALKO mice had attenuated pSTAT3 signaling in the arcuate nucleus of the hypothalamus 30 min after intracerebroventricular delivery of leptin. In response to high-fat diet for 2 months, the ALKO mice showed a greater increase of percent fat and blood leptin concentration. This coincided with a mild reactive gliosis in the hypothalamus. Overall, the absence of leptin receptors in astrocytes attenuated hypothalamic pSTAT3 signaling, induced a mild reactive morphology, and promoted the development of diet-induced obesity. We conclude that leptin signaling in astrocytes is essential for the homeostasis of neuroendocrine regulation in obesity.


Subject(s)
Astrocytes/metabolism , Leptin/metabolism , Receptors, Leptin/metabolism , Signal Transduction , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/metabolism , Female , Gliosis , Leptin/blood , Male , Mice , Receptors, Leptin/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
10.
J Mol Neurosci ; 55(3): 644-52, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25152064

ABSTRACT

Chronic sleep fragmentation (SF), common in patients with sleep apnea, correlates with the development of obesity. We hypothesized that SF differentially affects neurobehavior in lean wild-type (WT) and obese pan-leptin receptor knockout (POKO) mice fed the same normal diet. First, we established an SF paradigm by interrupting sleep every 2 min during the inactive light span. The maneuver was effective in decreasing sleep duration and bout length, and in increasing sleep state transition and waking, without significant rebound sleep in the dark span. Changes of sleep architecture were evident in the light span and consistent across days 1-10 of SF. There was reduced NREM, shortened sleep latency, and increased state transitions. During the light span of the first day of SF, there also was reduction of REM and increased delta power of slow-wave sleep. Potential effects of SF on thermal pain threshold, locomotor activity, and anxiety were then tested. POKO mice had a lower circadian amplitude of pain latency than WT mice in the hot plate test, and both groups had lowest tolerance at 4 pm (zeitgeber time (ZT) 10) and longest latency at 4 am (ZT 22). SF increased the pain threshold in WT but not in POKO mice when tested at 8 a.m. (ZT 2). Both the POKO mutation and SF resulted in reduced physical activity and increased anxiety, but there was no additive effect of these two factors. Overall, SF and the POKO mutation differentially regulate mouse behavior. The results suggest that obesity can blunt neurobehavioral responses to SF.


Subject(s)
Obesity/physiopathology , Sleep Deprivation/physiopathology , Animals , Circadian Rhythm , Delta Rhythm , Male , Mice , Mice, Inbred C57BL , Obesity/complications , Obesity/genetics , Receptors, Leptin/genetics , Sleep Deprivation/complications , Sleep Stages
11.
Neurosci Biobehav Rev ; 47: 656-69, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25451764

ABSTRACT

Both obstructive sleep apnea (OSA) and Alzheimer's disease (AD) are increasing health concerns. The objective of this study is to review systematically the effects of OSA on the development of AD. The search was conducted in PubMed and Cochrane CENTRAL, and followed by a manual search of references of published studies. Cross-sectional, cohorts, and randomized clinical trials were reviewed. Besides clinical studies, we also discuss neuroimaging data, experimental animal evidence, and molecular mechanisms. Although a causal relationship between OSA and AD is not yet established, OSA induces neurodegenerative changes as a result of two major contributing processes: sleep fragmentation and intermittent hypoxia. As such, inflammation and cellular stress are sufficient to impair cell-cell interactions, synaptic function, and neural circuitry, leading to a decline of cognitive behavior. Sustained OSA could promote cognitive dysfunction, overlapping with that in AD and other neurodegenerative diseases. Early treatment by positive airway pressure and other current standards of care should have a positive impact to alleviate structural and functional deterioration. With better understanding of the cellular and neurophysiological mechanisms by which OSA contributes to AD, we may identify novel molecular targets for intervention.


Subject(s)
Alzheimer Disease/etiology , Brain/physiopathology , Sleep Apnea, Obstructive/complications , Alzheimer Disease/physiopathology , Humans , Neuroimaging , Sleep Apnea, Obstructive/physiopathology
12.
J Neurosci ; 34(44): 14697-706, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25355222

ABSTRACT

The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice.


Subject(s)
Blood-Brain Barrier/physiopathology , Brain/physiopathology , Sleep Deprivation/physiopathology , Sleep/physiology , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Down-Regulation , Endothelial Cells/metabolism , Glucose Transporter Type 1/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Permeability , Sleep Deprivation/metabolism
13.
Brain Behav Immun ; 40: 61-73, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24576482

ABSTRACT

Leptin, a pleiotropic adipokine, crosses the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) from the periphery and facilitates experimental autoimmune encephalomyelitis (EAE). EAE induces dynamic changes of leptin receptors in enriched brain and spinal cord microvessels, leading to further questions about the potential roles of endothelial leptin signaling in EAE progression. In endothelial leptin receptor specific knockout (ELKO) mice, there were lower EAE behavioral scores in the early phase of the disorder, better preserved BSCB function shown by reduced uptake of sodium fluorescein and leukocyte infiltration into the spinal cord. Flow cytometry showed that the ELKO mutation decreased the number of CD3 and CD45 cells in the spinal cord, although immune cell profiles in peripheral organs were unchanged. Not only were CD4(+) and CD8(+) T lymphocytes reduced, there were also lower numbers of CD11b(+)Gr1(+) granulocytes in the spinal cord of ELKO mice. In enriched microvessels from the spinal cord of the ELKO mice, the decreased expression of mRNAs for a few tight junction proteins was less pronounced in ELKO than WT mice, as was the elevation of mRNA for CCL5, CXCL9, IFN-γ, and TNF-α. Altogether, ELKO mice show reduced inflammation at the level of the BSCB, less leukocyte infiltration, and better preserved tight junction protein expression and BBB function than WT mice after EAE. Although leptin concentrations were high in ELKO mice and microvascular leptin receptors show an initial elevation before inhibition during the course of EAE, removal of leptin signaling helped to reduce disease burden. We conclude that endothelial leptin signaling exacerbates BBB dysfunction to worsen EAE.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Leptin/blood , Leukocytes/immunology , Receptors, Leptin/metabolism , Spinal Cord/immunology , Animals , Blood-Brain Barrier/metabolism , Brain/blood supply , Brain/immunology , Cytokines/immunology , Endothelial Cells/metabolism , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/metabolism , Receptors, Leptin/genetics , Severity of Illness Index , Signal Transduction , Spinal Cord/blood supply , Tight Junctions/immunology
14.
Brain Behav Immun ; 38: 53-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24566387

ABSTRACT

Sleep disturbance in patients with multiple sclerosis is prevalent and has multifactorial causes. In mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, we determined the dynamic changes of sleep architecture and the interactions between sleep changes and EAE symptoms. The changes of sleep patterns were mainly reflected by altered sleep stage distribution and increased sleep fragmentation. Increased waking and decreased non-rapid eye movement sleep occurred after EAE onset and persisted through the symptomatic phase. There also was increased sleep state transition, indicating a reduction of sleep cohesiveness. Furthermore, the extent of sleep fragmentation correlated with the severity of disease. This is the first study of sleep characteristics in EAE mice demarcating specific changes related to the autoimmune disorder without confounding factors such as psychosocial impact and treatment effects. The reduction of sleep efficiency and cohesiveness supports the notion that enhancing sleep might facilitate the recovery of mice from EAE, pertinent to the multimodality treatment of multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/physiopathology , Sleep Deprivation/physiopathology , Animals , Encephalomyelitis, Autoimmune, Experimental/complications , Female , Mice , Sleep Deprivation/complications
15.
J Cereb Blood Flow Metab ; 34(1): 43-51, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24064496

ABSTRACT

The blood-brain barrier (BBB) is a regulatory interface between the central nervous system and the rest of the body. However, BBB changes in obesity and metabolic syndrome have not been fully elucidated. We hypothesized that obesity reduces energy metabolism in the cerebral microvessels composing the BBB, reflected by downregulation of protein expression and function. We performed comparative proteomic analyses in enriched microvessels from the cerebral cortex of mice 2 months after ingestion of a high-fat diet or regular rodent chow. In mice with diet-induced obesity (DIO), there was downregulation of 47 proteins in the cerebral microvessels, including cytoskeletal proteins, chaperons, enzymes, transport-related proteins, and regulators for transcriptional and translational activities. Only two proteins, involved in messenger RNA (mRNA) transport and processing, were upregulated. The changes of these proteins were further validated by quantitative polymerase chain reaction (qPCR), western blotting, and immunofluorescent staining of freshly isolated microvessels, in samples obtained from different batches of mice. The predominant downregulation suggests that DIO suppresses metabolic activity of BBB microvessels. The finding of a hypometabolic state of the BBB in mice at the chronic stage of DIO is unexpected and unprecedented; it may provide novel mechanistic insight into how obesity influences CNS function via regulatory changes of the BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Protein Biosynthesis , Animals , Blotting, Western , Disease Models, Animal , Down-Regulation , Electrophoresis, Gel, Two-Dimensional , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microvessels/metabolism , Microvessels/pathology , Obesity/etiology , Obesity/pathology , Proteomics , Real-Time Polymerase Chain Reaction , Up-Regulation
16.
Fluids Barriers CNS ; 11(1): 27, 2014.
Article in English | MEDLINE | ID: mdl-25601899

ABSTRACT

BACKGROUND: We have recently shown that mice with experimental autoimmune encephalomyelitis (EAE) have increased sleep fragmentation (SF) and reduced sleep efficiency, and that the extent of SF correlates with the severity of disease. It is not yet clear whether and how sleep promotes recovery from autoimmune attacks. We hypothesized that SF promotes leukocyte infiltration across the blood-spinal cord barrier, impairs immune regulation, and thus worsens EAE. METHODS: Three groups of C57 mice were studied: Resting EAE; SF EAE with the mice subjected to the SF maneuver 12 h /day during zeitgeber time (ZT) 0-12 h; and naïve controls with neither EAE nor SF. Besides monitoring of the incidence and severity of EAE, the immune profiles of leukocytes in the spinal cord as well as those in the spleen were determined. RESULTS: When analyzed 16 days after EAE induction, at which time the SF was terminated, the SF group had a greater number of CD4(+) T cells and a higher percent of CD4(+) cells among all leukocytes in the spinal cord than the resting EAE group. When allowed to recover to 28 days after EAE induction, the SF mice had lower EAE scores than the resting EAE group. EAE induced splenomegaly and an increase of Gr1(+)CD11b(+) myeloid-derived suppressor cells in the splenocytes. However, SF treatment had no additional effect on either peripheral splenocytes or granulocytes that reached the spinal cord. CONCLUSION: The SF maneuver facilitated the migration of encephalopathic lymphocytes into the spinal cord. Paradoxically, these mice had a better EAE score after cessation of SF compared with mice without SF.

17.
Sleep Med Rev ; 18(3): 283-90, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24080454

ABSTRACT

Leptin, a pleiotropic protein hormone produced mainly by fat cells, regulates metabolic activity and many other physiological functions. The intrinsic circadian rhythm of blood leptin is modulated by gender, development, feeding, fasting, sleep, obesity, and endocrine disorders. Hyperleptinemia is implicated in leptin resistance. To determine the specificity and sensitivity of leptin concentrations in sleep disorders, we summarize here the alterations of leptin in four conditions in animal and human studies: short duration of sleep, sleep fragmentation, obstructive sleep apnea (OSA), and after use of continuous positive airway pressure (CPAP) to treat OSA. The presence and causes of contradictory findings are discussed. Though sustained insufficient sleep lowers fasting blood leptin and therefore probably contributes to increased appetite, obesity and OSA independently result in hyperleptinemia. Successful treatment of OSA by CPAP is predicted to decrease hyperleptinemia, making leptin an ancillary biomarker for treatment efficacy. Current controversies also call for translational studies to determine how sleep disorders regulate leptin homeostasis and how the information can be used to improve sleep treatment.


Subject(s)
Biomarkers/blood , Leptin/blood , Sleep Wake Disorders/blood , Sleep Wake Disorders/diagnosis , Appetite/physiology , Continuous Positive Airway Pressure , Humans , Obesity/blood , Sleep Apnea, Obstructive/blood , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/therapy , Sleep Deprivation/blood , Sleep Deprivation/diagnosis , Sleep Deprivation/therapy , Sleep Wake Disorders/therapy , Treatment Outcome
18.
Fluids Barriers CNS ; 10(1): 32, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24176017

ABSTRACT

BACKGROUND: Fibroblast growth factor (FGF)-19, an endocrine FGF protein mainly produced by the ileum, stimulates metabolic activity and alleviates obesity. FGF19 modulates metabolism after either intravenous or intracerebroventricular injection, and its receptor FGFR4 is present in the hypothalamus. This led to the question whether blood-borne FGF19 crosses the blood-brain barrier (BBB) to exert its metabolic effects. METHODS: We determined the pharmacokinetics of FGF19 permeation from blood to brain in comparison with its distribution in peripheral organs. Multiple-time regression analysis after intravenous bolus injection, in-situ brain perfusion, and HPLC assays were performed. RESULTS: FGF19 was relatively stable in blood and in the brain compartment. Significant influx was seen in the presence of excess unlabeled FGF19 in blood. This coincided with a slower decline of 125I-FGF19 in blood which suggested there was decreased clearance or peripheral tissue uptake. In support of an altered pattern of peripheral processing of 125I-FGF19 by excess unlabeled FGF19, the high influx to liver was significantly attenuated, whereas the minimal renal uptake was linearly accelerated. In the present setting, we did not detect a saturable transport of FGF19 across the BBB, as the entry rate of 125I-FGF19 was not altered by excess unlabeled FGF19 or its mouse homologue FGF15 during in-situ brain perfusion. CONCLUSION: FGF19 remained stable in the blood and brain compartments for up to 10 min. Its influx to the brain was non-linear, non-saturable, and affected by its blood concentration and distribution in peripheral organs. Liver showed a robust and specific uptake of FGF19 that could be inhibited by the presence of excess unlabeled FGF19, whereas kidney clearance was dose-dependent.

19.
J Mol Neurosci ; 51(3): 1038-45, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23955775

ABSTRACT

Excessive obesity correlates with hypersomnolence and impaired cognitive function, presumably induced by metabolic factors and cytokines. Production of the adipokine leptin correlates with the amount of adiposity, and leptin has been shown to promote sleep. To determine whether leptin plays a major role in the hypersomnolence of obesity, we measured sleep architecture in pan-leptin receptor knockout (POKO) mice that do not respond to leptin because of the production of a mutant, non-signaling receptor. The obese POKO mice had more non-rapid eye movement (NREM) sleep and less waking time than their littermate controls. This was mainly seen during the light span, although increased bouts of rapid eye movement sleep were also seen in the dark span. The increase of NREM sleep correlated with the extent of obesity. The POKO mice also had decreased locomotor activity and more immobility in the open field test, but there was no increase of forced immobility nor reduction of sucrose intake as would be seen in depression. The increased NREM sleep and reduced locomotor activity in the POKO mice suggest that it was obesity, rather than leptin signaling, that played a predominant role in altering sleep architecture and activity.


Subject(s)
Disorders of Excessive Somnolence/genetics , Motor Activity , Receptors, Leptin/genetics , Animals , Disorders of Excessive Somnolence/etiology , Disorders of Excessive Somnolence/physiopathology , Mice , Mice, Knockout , Obesity/complications , Obesity/genetics , Sleep, REM , Wakefulness
20.
PLoS One ; 8(8): e69356, 2013.
Article in English | MEDLINE | ID: mdl-23950892

ABSTRACT

Interleukin (IL)-15 is a ubiquitously expressed cytokine that in the basal state is mainly localized intracellularly, including the nucleus. Unexpectedly, tumor necrosis factor-α (TNF) time-dependently induced nuclear export of IL-15Rα and IL15. This process was inhibited by leptomycine B (LMB), a specific inhibitor of nuclear export receptor chromosomal region maintenance 1 (CRM1). In the presence of TNF, LMB co-treatment led to accumulation of both IL-15Rα and IL-15 in the nucleus of HeLa cells, suggesting that CRM1 facilitates nuclear export and that TNF enhances CRM1 activity. Once in the cytoplasm, IL-15 showed partial co-localization with late endosomes but very little with other organelles tested 4 h after TNF treatment. IL-15Rα showed co-localization with both early and late endosomes, and to a lesser extent with endoplasmic reticulum and Golgi. This indicates different kinetics and possibly different trafficking routes of IL-15 from its specific receptor. The TNF-induced secretion of IL-15 was attenuated by pretreatment of cells by brefeldin A that inhibits ER-to-Golgi transport, or by use of domain negative ADP-ribosylation factor 6 (ARF6) that interferes with exocytotic sorting. We conclude that TNF abolishes nuclear localization of IL-15 and IL-15Rα by acting on CRM1, and it facilitates exocytosis of IL-15 with the involvement of ARF6.


Subject(s)
ADP-Ribosylation Factors/metabolism , Interleukin-15/metabolism , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Tumor Necrosis Factor-alpha/pharmacology , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Active Transport, Cell Nucleus/drug effects , Blotting, Western , Brefeldin A/pharmacology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Fatty Acids, Unsaturated/pharmacology , Golgi Apparatus/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Immunohistochemistry , Interleukin-15 Receptor alpha Subunit/genetics , Interleukin-15 Receptor alpha Subunit/metabolism , Karyopherins/antagonists & inhibitors , Microscopy, Fluorescence , Protein Binding , Protein Transport/drug effects , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Time Factors , Exportin 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...