Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
R Soc Open Sci ; 10(5): 230056, 2023 May.
Article in English | MEDLINE | ID: mdl-37153363

ABSTRACT

Recently, Cooke et al. (Cooke et al. 2022 R. Soc. Open Sci. 9, 211165. (doi:10.1098/rsos.211165)) used a three-dimensional coupled chemistry-climate model (WACCM6) to calculate ozone column depths at varied atmospheric O2 levels. They argued that previous one-dimensional (1-D) photochemical model studies, e.g. Segura et al. (Segura et al. 2003 Astrobiology 3, 689-708. (doi:10.1089/153110703322736024)), may have overestimated the ozone column depth at low pO2, and hence also overestimated the lifetime of methane. We have compared new simulations from an updated version of the Segura et al. model with those from WACCM6, together with some results from a second three-dimensional model. The discrepancy in ozone column depths is probably due to multiple interacting parameters, including H2O in the upper troposphere, lower boundary conditions, vertical and meridional transport rates, and different chemical mechanisms, especially the treatment of O2 photolysis in the Schumann-Runge (SR) bands (175-205 nm). The discrepancy in tropospheric OH concentrations and methane lifetime between WACCM6 and the 1-D model at low pO2 is reduced when absorption from CO2 and H2O in this wavelength region is included in WACCM6. Including scattering in the SR bands may further reduce this difference. Resolving these issues can be accomplished by developing an accurate parametrization for O2 photolysis in the SR bands and then repeating these calculations in the various models.

2.
Lab Chip ; 16(22): 4415-4423, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27752680

ABSTRACT

Wearable sweat biosensensing technology has dominantly relied on techniques which place planar-sensors or fluid-capture materials directly onto the skin surface. This 'on-skin' approach can result in sample volumes in the µL regime, due to the roughness of skin and/or due to the presence of hair. Not only does this increase the required sampling time to 10's of minutes or more, but it also increases the time that sweat spends on skin and therefore increases the amount of analyte contamination coming from the skin surface. Reported here is a first demonstration of a new paradigm in sweat sampling and sensing, where sample volumes are reduced from the µL's to nL's regime, and where analyte contamination from skin is reduced or even eliminated. A micro-porous membrane is constructed such that it is porous to sweat only. To complete a working device, first placed onto skin is a cosmetic-grade oil, secondly this membrane, and thirdly the sensors. As a result, spreading of sweat is isolated to only regions above the sweat glands before it reaches the sensors. Best case sampling intervals are on the order of several minutes, and the majority of hydrophilic (low oil solubility) contaminants from the skin surface are blocked. In vitro validation of this new approach is performed with an improved artificial skin including human hair. In vivo tests show strikingly consistent results, and reveal that the oil/membrane is robust enough to even allow horizontal sliding of a sensor.


Subject(s)
Biosensing Techniques/instrumentation , Lab-On-A-Chip Devices , Membranes, Artificial , Oils/chemistry , Skin/chemistry , Sweat/chemistry , Artifacts , Electric Impedance , Humans , Limit of Detection
4.
Geobiology ; 9(4): 313-20, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21682839

ABSTRACT

An anoxic, sulfidic ocean that may have existed during the Proterozoic Eon (0.54-2.4 Ga) would have had limited trace metal abundances because of the low solubility of metal sulfides. The lack of copper, in particular, could have had a significant impact on marine denitrification. Copper is needed for the enzyme that controls the final step of denitrification, from N(2) O to N(2) . Today, only about 5-6% of denitrification results in release of N(2) O. If all denitrification stopped at N(2) O during the Proterozoic, the N(2) O flux could have been 15-20 times higher than today, producing N(2) O concentrations of several ppmv, but only if O(2) levels were relatively high (>0.1 PAL). At lower O(2) levels, N(2) O is rapidly photodissociated. Methane concentrations may also have been elevated during this time, as has been previously suggested. A lack of dissolved O(2) and sulfate in the deep ocean could have produced a high methane flux from marine sediments, as much as 10-20 times today's methane flux from land. The photochemical lifetime of CH(4) increases as more CH(4) is added to the atmosphere, so CH(4) concentrations of up to 100 ppmv are possible during this time. The combined greenhouse effect of CH(4) and N(2) O could have provided up to 10° of warming, thereby keeping the surface warm during the Proterozoic without necessitating high CO(2) levels. A second oxygenation event near the end of the Proterozoic would have resulted in a reduction in both atmospheric N(2) O and CH(4) , perhaps triggering the Neoproterozoic "Snowball Earth" glaciations.


Subject(s)
Atmosphere/chemistry , Global Warming , Greenhouse Effect , Methane/chemistry , Nitrous Oxide/chemistry , Models, Theoretical , Nitrogen Cycle , Seawater/chemistry
5.
Kidney Int ; 69(1): 105-13, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16374430

ABSTRACT

Recent evidence suggesting a strong interplay between components of the renin-angiotensin system and key mediators of fibrosis led us to hypothesize that renin, independent of its enzymatic action to enhance angiotensin (Ang) II synthesis, directly increases production of the fibrogenic cytokine transforming growth factor (TGF)-beta. Human or rat mesangial cells (MCs) were treated with human recombinant renin (HrRenin) or rat recombinant renin (RrRenin) and the effects on TGF-beta1, plasminogen activator inhibitor-type 1 (PAI-1), fibronectin (FN) and collagen 1 mRNA and protein were investigated. Blockade of the rat MC renin receptor was achieved using siRNA. HrRenin or RrRenin, at doses shown to be physiologically relevant, induced marked dose- and time-dependent increases in TGF-beta1. These effects were not altered by adding an inhibitor of renin's enzymatic action (RO 42-5892), the Ang II receptor antagonist losartan or the Ang-converting enzyme inhibitor enalapril. RrRenin also induced PAI-1, FN and collagen 1 mRNA and PAI-1 and FN protein in a dose-dependent manner. Neutralizing antibodies to TGF-beta partially blocked these effects. Supernatant and cell lysate Ang I and Ang II levels were extremely low. MC angiotensinogen mRNA was undetectable both with and without added renin. Targeting of the rat renin receptor mRNA with siRNA blocked induction of TGF-beta1. We conclude that renin upregulates MC TGF-beta1 through a receptor-mediated mechanism, independent of Ang II generation or action. Renin-induced increases in TGF-beta1 in turn stimulate increases in PAI-1, FN and collagen I. Thus, renin may contribute to renal fibrotic disease, particularly when therapeutic Ang II blockade elevates plasma renin.


Subject(s)
Angiotensin II/physiology , Extracellular Matrix Proteins/biosynthesis , Glomerular Mesangium/drug effects , Receptors, Cell Surface/physiology , Renin/pharmacology , Transforming Growth Factor beta/biosynthesis , Vacuolar Proton-Translocating ATPases/physiology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Fibronectins/biosynthesis , Glomerular Mesangium/metabolism , Humans , Plasminogen Activator Inhibitor 1/biosynthesis , RNA, Messenger/analysis , Rats , Recombinant Proteins/pharmacology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta1
6.
Astrobiology ; 2(1): 27-41, 2002.
Article in English | MEDLINE | ID: mdl-12449853

ABSTRACT

Mass-independent fractionation (MIF) of sulfur isotopes has been reported in sediments of Archean and Early Proterozoic Age (> 2.3 Ga) but not in younger rocks. The only fractionation mechanism that is consistent with the data on all four sulfur isotopes involves atmospheric photochemical reactions such as SO2 photolysis. We have used a one-dimensional photochemical model to investigate how the isotopic fractionation produced during SO2 photolysis would have been transferred to other gaseous and particulate sulfur-bearing species in both low-O2 and high-O2 atmospheres. We show that in atmospheres with O2 concentrations < 10(-5) times the present atmospheric level (PAL), sulfur would have been removed from the atmosphere in a variety of different oxidation states, each of which would have had its own distinct isotopic signature. By contrast, in atmospheres with O2 concentrations > or = 10(-5) PAL, all sulfur-bearing species would have passed through the oceanic sulfate reservoir before being incorporated into sediments, so any signature of MIF would have been lost. We conclude that the atmospheric O2 concentration must have been < 10(-5) PAL prior to 2.3 Ga.


Subject(s)
Archaea/chemistry , Atmosphere , Sulfur Isotopes/analysis , Molecular Weight
8.
Orig Life Evol Biosph ; 31(3): 271-85, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11434106

ABSTRACT

A simple coupled ecosystem-climate model is described that can predict levels of atmospheric CH4, CO2, and H2 during the Late Archean, given observed constraints on Earth's surface temperature. We find that methanogenic bacteria should have converted most of the available atmospheric H2 into CH4, and that CH4 may have been equal in importance to CO2 as a greenhouse gas. Photolysis of this CH4 may have produced a hydrocarbon smog layer that would have shielded the surface from solar UV radiation. Methanotrophic bacteria would have consumed some of the atmospheric CH4, but they would have been incapable of reducing CH4 to modern levels. The rise of O2 around 2.3 Ga would have drastically reduced the atmospheric CH4 concentration and may thereby have triggered the Huronian glaciation.


Subject(s)
Atmosphere/analysis , Biological Evolution , Ecosystem , Methane/analysis , Aerobiosis , Anaerobiosis , Climate , Euryarchaeota/metabolism , Methane/metabolism , Methylococcaceae/metabolism , Models, Biological
9.
Nature ; 412(6842): 26-7, 2001 Jul 05.
Article in English | MEDLINE | ID: mdl-11452283
10.
Icarus ; 145(1): 262-71, 2000 May.
Article in English | MEDLINE | ID: mdl-11543302

ABSTRACT

NASA's proposed Terrestrial Planet Finder, a space-based interferometer, will eventually allow spectroscopic analyses of the atmospheres of extrasolar planets. Such analyses would provide information about the existence of life on these planets. One strategy in the search for life is to look for evidence of O3 (and hence O2) in a planet's atmosphere; another is to look for gases that might be present in an atmosphere analogous to that of the inhabited early Earth. In order to investigate these possibilities, we have calculated synthetic spectra for several hypothetical terrestrial-type atmospheres. The model atmospheres represent four different scenarios. The first two, representing inhabited terrestrial planets, are an Earth-like atmosphere containing variable amounts of oxygen and an early Earth-type atmosphere containing methane. In addition, two cases representing Mars-like and early Venus-like atmospheres were evaluated, to provide possible "false positive" spectra. The calculated spectra suggest that ozone could be detected by an instrument like Terrestrial Planet Finder if the O2 concentration in the planet's atmosphere is > or = 200 ppm, or 10(-3) times the present atmospheric level. Methane should be observable on an early-Earth type planet if it is present in concentrations of 100 ppm or more. Methane has both biogenic and abiogenic sources, but concentrations exceeding 1000 ppm, or 0.1% by volume, would be difficult to produce from abiogenic sources alone. High methane concentrations in a planet's atmosphere are therefore another potential indicator for extraterrestrial life.


Subject(s)
Atmosphere/analysis , Biomarkers , Exobiology , Planets , Astronomy/methods , Atmosphere/chemistry , Extraterrestrial Environment , Methane/analysis , Models, Chemical , Ozone/analysis , Spectrum Analysis
11.
Icarus ; 145(2): 546-54, 2000 Jun.
Article in English | MEDLINE | ID: mdl-11543507

ABSTRACT

Recent studies have shown that clouds made of carbon dioxide ice may have warmed the surface of early Mars by reflecting not only incoming solar radiation but upwelling IR radiation as well. However, these studies have not treated scattering self-consistently in the thermal IR. Our own calculations, which treat IR scattering properly, confirm these earlier calculations but show that CO2 clouds can also cool the surface, especially if they are low and optically thick. Estimating the actual effect of CO2 clouds on early martian climate will require three-dimensional models in which cloud location, height, and optical depth, as well as surface temperature and pressure, are determined self-consistently. Our calculations further confirm that CO2 clouds should extend the outer boundary of the habitable zone around a star but that there is still a finite limit beyond which above-freezing surface temperatures cannot be maintained by a CO2-H2O atmosphere. For our own Solar System, the absolute outer edge of the habitable zone is at approximately 2.4 AU.


Subject(s)
Carbon Dioxide , Climate , Infrared Rays , Mars , Models, Theoretical , Atmosphere , Atmospheric Pressure , Evolution, Planetary , Exobiology , Extraterrestrial Environment , Scattering, Radiation , Temperature , Water
12.
J Geophys Res ; 105(E5): 11981-90, 2000 May 25.
Article in English | MEDLINE | ID: mdl-11543544

ABSTRACT

Earth appears to have been warm during its early history despite the faintness of the young Sun. Greenhouse warming by gaseous CO2 and H2O by itself is in conflict with constraints on atmospheric CO2 levels derived from paleosols for early Earth. Here we explore whether greenhouse warming by methane could have been important. We find that a CH4 mixing ratio of 10(-4) (100 ppmv) or more in Earth's early atmosphere would provide agreement with the paleosol data from 2.8 Ga. Such a CH4 concentration could have been readily maintained by methanogenic bacteria, which are thought to have been an important component of the biota at that time. Elimination of the methane component of the greenhouse by oxidation of the atmosphere at about 2.3-2.4 Ga could have triggered the Earth's first widespread glaciation.


Subject(s)
Atmosphere/chemistry , Earth, Planet , Evolution, Planetary , Greenhouse Effect , Methane/chemistry , Carbon Dioxide/analysis , Climate , Euryarchaeota/metabolism , Hydrogen/analysis , Hydrogen/chemistry , Methane/analysis , Models, Chemical , Photochemistry , Temperature , Water/analysis , Water/chemistry
13.
J Geophys Res ; 104(E12): 30725-8, 1999 Dec 25.
Article in English | MEDLINE | ID: mdl-11543198

ABSTRACT

Determining the source of Earth's oceans is a longstanding problem in planetary science. Possible sources of water include water ice or water of hydration of silicate minerals in the original material from which the bulk Earth accreted and water brought in by late-arriving planetesimals during the heavy bombardment period (4.5-3.8 Gyr ago) [Chyba, 1989, 1991]. Comets are an attractive source of water because their origin in the outer solar system is consistent with the long timescale for heavy bombardment. However, the high deuterium/hydrogen (D/H) ratio of the three comets that have been studied, Halley, Hyakutake, and Hale-Bopp, indicates that Earth must have had a source with a low-D/H ratio as well. Here we suggest that solar wind-implanted hydrogen on interplanetary dust particles (IDPs) provided the necessary low-D/H component of Earth's water inventory.


Subject(s)
Cosmic Dust , Deuterium/analysis , Evolution, Planetary , Hydrogen/analysis , Seawater/chemistry , Earth, Planet , Meteoroids , Oceans and Seas , Solar Activity
14.
Nature ; 396(6710): 453-5, 1998 Dec 03.
Article in English | MEDLINE | ID: mdl-9853751

ABSTRACT

Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic (about 2.4-2.2 Gyr ago) and Neoproterozoic (about 820-550 Myr ago) eras, although some of the Neoproterozoic data are disputed. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics-the 'snowball Earth' hypothesis-or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54 degrees during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5 degrees. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100 Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5 degrees), which is otherwise difficult to explain.


Subject(s)
Cold Climate , Earth, Planet , Evolution, Planetary , Atmosphere , Ice , Models, Theoretical , Moon
16.
Orig Life Evol Biosph ; 27(4): 413-20, 1997 Aug.
Article in English | MEDLINE | ID: mdl-11536831

ABSTRACT

Now that extrasolar planets have been found, it is timely to ask whether some of them might be suitable for life. Climatic constraints on planetary habitability indicate that a reasonably wide habitable zone exists around main sequence stars with spectral types in the early-F to mid-K range. However, it has not been demonstrated that planets orbiting such stars would be habitable when biologically-damaging energetic radiation is also considered. The large amounts of UV radiation emitted by early-type stars have been suggested to pose a problem for evolving life in their vicinity. But one might also argue that the real problem lies with late-type stars, which emit proportionally less radiation at the short wavelengths (lambda < 200 nm) required to split O2 and initiate ozone formation. We show here that neither of these concerns is necessarily fatal to the evolution of advanced life: Earth-like planets orbiting F and K stars may well receive less harmful UV radiation at their surfaces than does the Earth itself.


Subject(s)
Atmosphere/chemistry , Extraterrestrial Environment , Models, Chemical , Planets , Ultraviolet Rays , Astronomical Phenomena , Astronomy , Evolution, Planetary , Oxygen/analysis , Ozone/analysis , Photochemistry
17.
Orig Life Evol Biosph ; 27(1-3): 291-307, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9150578

ABSTRACT

Habitable planets are likely to exist around stars not too different from the Sun if current theories about terrestrial climate evolution are correct. Some of these planets may have evolved life, and some of the inhabited planets may have evolved O2-rich atmospheres. Such atmospheres could be detected spectroscopically on planets around nearby stars using a space-based interferometer to search for the 9.6 micron band of O3. Planets with O2-rich atmospheres that lie within the habitable zone around their parent star are, in all probability, inhabited.


Subject(s)
Climate , Earth, Planet , Extraterrestrial Environment , Planets , Astronomical Phenomena , Astronomy , Atmosphere , Life , Oxygen , Solar System , Space Flight , Time
19.
Energy Policy ; 25(5): 491-500, 1997 Apr.
Article in English | MEDLINE | ID: mdl-11542949

ABSTRACT

Current optimizing climate-economy models use CO2 uptake functions that greatly underestimate both peak atmospheric CO2 concentrations and the time horizon of elevated CO2. As a result these models underestimate potential global warming damages. Here, a more realistic, but practical, carbon cycle parameterization is developed that can be incorporated within an optimizing climate-economy model framework. This method is utilized in conjunction with the DICE model (Nordhaus, 1994) to estimate optimal reductions in CO2 emissions. The results are shown to be extremely sensitive to the pore rate of time preference, rho. For rho=3% (Nordhaus' preferred value), our model predicts an optimal CO2 emission reduction of 13% by the year 2045, as compared to 11% in the original DICE model. But, for rho=0% the optimal emissions reduction rises to 79% in the year 2045 and to 97% by the year 2200. We argue that energy policy should be guided by the rho=0% results for both economic and ethical reasons. A steady-state analysis performed using the DICE model supports the argument that large fractional reductions in CO2 emissions should be undertaken.


Subject(s)
Carbon Dioxide/chemistry , Climate , Models, Economic , Models, Theoretical , Atmosphere/chemistry , Computer Simulation , Forecasting , Greenhouse Effect , Policy Making , Seawater/chemistry
20.
Nature ; 385(6613): 234-6, 1997 Jan 16.
Article in English | MEDLINE | ID: mdl-9000072

ABSTRACT

Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.


Subject(s)
Exobiology , Planets , Extraterrestrial Environment , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...