Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Inorg Chem Front ; 11(2): 534-548, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38235273

ABSTRACT

While platinum-based chemotherapeutic agents have established themselves as indispensable components of anticancer therapy, they are accompanied by a variety of side effects and the rapid occurrence of drug resistance. A promising strategy to address these challenges is the use of platinum(iv) prodrugs, which remain inert until they reach the tumor tissue, thereby mitigating detrimental effects on healthy cells. Typically, platinum drugs are part of combination therapy settings. Consequently, a very elegant strategy is the development of platinum(iv) prodrugs bearing a second, clinically relevant therapeutic in axial position. In the present study, we focused on gemcitabine as an approved antimetabolite, which is highly synergistic with platinum drugs. In addition, to increase plasma half-life and facilitate tumor-specific accumulation, an albumin-binding maleimide moiety was attached. Our investigations revealed that maleimide-cisplatin(iv)-gemcitabine complexes cannot carry sufficient amounts of gemcitabine to induce a significant effect in vivo. Consequently, we designed a carboplatin(iv) analog, that can be applied at much higher doses. Remarkably, this novel analog demonstrated impressive in vivo results, characterized by significant improvements in overall survival. Notably, these encouraging results could also be transferred to an in vivo xenograft model with acquired gemcitabine resistance, indicating the high potential of this approach.

2.
Opt Express ; 31(21): 35330-35342, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859267

ABSTRACT

Mid-infrared frequency combs are nowadays well-appreciated sources for spectroscopy and frequency metrology. Here, a comprehensive approach for characterizing a difference-frequency-generated mid-infrared frequency comb (DFG-comb) both in the time and in the frequency domain is presented. An autocorrelation scheme exploiting mid-infrared two-photon detection is used for characterizing the pulse width and to verify the optimal compression of the generated pulses reaching a pulse duration (FWHM) as low as 196 fs. A second scheme based on mid-infrared heterodyne detection employing two independent narrow-linewidth quantum cascade lasers (QCLs) is used for frequency-narrowing the modes of the DFG-comb down to 9.4 kHz on a 5-ms timescale.

3.
Angew Chem Int Ed Engl ; 62(46): e202311468, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37703130

ABSTRACT

Platinum(IV) prodrugs are highly interesting alternatives to platinum(II) anticancer therapeutics due to their increased tumor selectivity and reduced side effects. In contrast to the established theory, we recently observed that the equatorial ligand(s) of e.g. oxaliplatin(IV) complexes can be hydrolyzed with formation of [(DACH)Pt(OHeq )2 (OAcax )2 ]. In the work presented here, we investigated the reactivity and synthetic usability of this complex to be exploited as a precursor for the development of novel platinum(IV) complexes, not able to be synthesized by conventional protocols. Indeed, we could substitute the equatorial hydroxido ligand(s) e.g. by one or two monodentate biotin ligands (which would be oxidized under standard methods). The formed complexes turned out to be very stable with slow ligand release after reduction, ideal for long-circulating tumor-targeting strategies. Therefore, two platinum(IV) complexes with equatorial maleimides, capable of exploiting serum albumin as a natural nanocarrier, were synthesized as well. The complexes showed massively prolonged plasma half-life and distinctly improved anticancer activity in vivo compared to oxaliplatin. Taken together, the newly developed synthetic platform allows the simple and specific insertion of equatorial ligands into platinum(IV) complexes. This will enable the attachment of three different (bioactive) moieties generating targeted triple-action platinum(IV) prodrugs within one single platinum complex.


Subject(s)
Antineoplastic Agents , Neoplasms , Prodrugs , Humans , Platinum , Oxaliplatin , Organoplatinum Compounds , Ligands , Cell Line, Tumor
4.
Inorg Chem Front ; 10(14): 4126-4138, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37440920

ABSTRACT

Platinum(iv) prodrugs are a promising class of anticancer agents designed to overcome the limitations of conventional platinum(ii) therapeutics. In this work, we present oxaliplatin(iv)-based complexes, which upon reduction, release acetylsalicylic acid (aspirin), known for its antitumor activity against colon cancer and currently investigated in combination with oxaliplatin in a phase III clinical study. Comparison with a recently reported cisplatin analog (asplatin) revealed a massive increase in reduction stability for the oxaliplatin complex in mouse serum. This was in line with the cell culture data indicating the desired prodrug properties for the newly synthesized complex. For in vivo studies, a new derivative containing an albumin-binding maleimide unit was synthesized. Indeed, distinctly longer plasma half-life as well as higher tumor accumulation in comparison to asplatin and oxaliplatin were observed, also leading to significantly higher antitumor activity and overall survival of CT26 tumor-bearing mice.

6.
Commun Chem ; 5(1): 46, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-36697790

ABSTRACT

Clinical efficacy of oxaliplatin is frequently limited by severe adverse effects and therapy resistance. Acquired insensitivity to oxaliplatin is, at least in part, associated with elevated levels of glutathione (GSH). In this study we report on an oxaliplatin-based platinum(IV) prodrug, which releases L-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutamate-cysteine ligase, the rate-limiting enzyme in GSH biosynthesis. Two complexes bearing either acetate (BSO-OxOAc) or an albumin-binding maleimide (BSO-OxMal) as second axial ligand were synthesized and characterized. The in vitro anticancer activity of BSO-OxOAc was massively reduced in comparison to oxaliplatin, proving its prodrug nature. Nevertheless, the markedly lower intracellular oxaliplatin uptake in resistant HCT116/OxR cells was widely overcome by BSO-OxOAc resulting in distinctly reduced resistance levels. Platinum accumulation in organs of a colorectal cancer mouse model revealed higher tumor selectivity of BSO-OxMal as compared to oxaliplatin. This corresponded with increased antitumor activity, resulting in significantly enhanced overall survival. BSO-OxMal-treated tumors exhibited reduced GSH levels, proliferative activity and enhanced DNA damage (pH2AX) compared to oxaliplatin. Conversely, pH2AX staining especially in kidney cells was distinctly increased by oxaliplatin but not by BSO-OxMal. Taken together, our data provide compelling evidence for enhanced tumor specificity of the oxaliplatin(IV)/BSO prodrug.

7.
J Med Chem ; 64(16): 12132-12151, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34403254

ABSTRACT

Chemotherapy with platinum complexes is essential for clinical anticancer therapy. However, due to side effects and drug resistance, further drug improvement is urgently needed. Herein, we report on triple-action platinum(IV) prodrugs, which, in addition to tumor targeting via maleimide-mediated albumin binding, release the immunomodulatory ligand 1-methyl-d-tryptophan (1-MDT). Unexpectedly, structure-activity relationship analysis showed that the mode of 1-MDT conjugation distinctly impacts the reducibility and thus activation of the prodrugs. This in turn affected ligand release, pharmacokinetic properties, efficiency of immunomodulation, and the anticancer activity in vitro and in a mouse model in vivo. Moreover, we could demonstrate that the design of albumin-targeted multi-modal prodrugs using platinum(IV) is a promising strategy to enhance the cellular uptake of bioactive ligands with low cell permeability (1-MDT) and to improve their selective delivery into the malignant tissue. This will allow tumor-specific anticancer therapy supported by a favorably tuned immune microenvironment.


Subject(s)
Antineoplastic Agents/therapeutic use , Coordination Complexes/therapeutic use , Immunologic Factors/therapeutic use , Maleimides/therapeutic use , Neoplasms/drug therapy , Prodrugs/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Drug Screening Assays, Antitumor , Female , Humans , Immunologic Factors/chemical synthesis , Immunologic Factors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Male , Maleimides/chemical synthesis , Maleimides/pharmacology , Mice, Inbred BALB C , Mice, SCID , Molecular Structure , Platinum/chemistry , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Structure-Activity Relationship , Succinimides/chemical synthesis , Succinimides/pharmacology , Succinimides/therapeutic use
8.
Chemistry ; 26(68): 15867-15870, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-32871016

ABSTRACT

Maleimides are essential compounds for drug conjugation reactions via thiols to antibodies, peptides and other targeting units. However, one main drawback is the occurrence of thiol exchange reactions with, for example, glutathione resulting in loss of the targeting ability. A new strategy to overcome such retro-Michael exchange processes of maleimide-thiol conjugates by stabilization of the thiosuccinimide via a transcyclization reaction is presented. This reaction enables the straightforward synthesis of stable maleimide-thiol adducts essential in drug-conjugation applications.


Subject(s)
Immunoconjugates , Maleimides , Sulfhydryl Compounds , Cyclization , Drug Delivery Systems , Drug Stability , Immunoconjugates/chemistry , Maleimides/chemistry , Succinimides/chemistry , Sulfhydryl Compounds/chemistry
9.
Phys Chem Chem Phys ; 22(14): 7404-7411, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32215414

ABSTRACT

Photoelectron circular dichroism (PECD) is a highly sensitive enantiospecific spectroscopy for studying chiral molecules in the gas phase using either single-photon ionization or multiphoton ionization. In the short pulse limit investigated with femtosecond lasers, resonance-enhanced multiphoton ionization (REMPI) is rather instantaneous and typically occurs simultaneously via more than one vibrational or electronic intermediate state due to limited frequency resolution. In contrast, vibrational resolution in the REMPI spectrum can be achieved using nanosecond lasers. In this work, we follow the high-resolution approach using a tunable narrow-band nanosecond laser to measure REMPI-PECD through distinct vibrational levels in the intermediate 3s and 3p Rydberg states of fenchone. We observe the PECD to be essentially independent of the vibrational level. This behaviour of the chiral sensitivity may pave the way for enantiomer specific molecular identification in multi-component mixtures: one can specifically excite a sharp, vibrationally resolved transition of a distinct molecule to distinguish different chiral species in mixtures.

10.
Chemphyschem ; 20(11): 1416-1419, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30972931

ABSTRACT

Photoelectron circular dichroism (PECD) is a fascinating phenomenon both from a fundamental science aspect but also due to its emerging role as a highly sensitive analytic tool for chiral recognition in the gas phase. PECD has been studied with single-photon as well as multi-photon ionization. The latter has been investigated in the short pulse limit with femtosecond laser pulses, where ionization can be thought of as an instantaneous process. In this contribution, we demonstrate that multi-photon PECD still can be observed when using an ultra-violet nanosecond pulse to ionize chiral showcase fenchone molecules. Compared to femtosecond ionization, the magnitude of PECD is similar, but the lifetime of intermediate molecular states imprints itself in the photoelectron spectra. Being able to use an industrial nanosecond laser to investigate PECD furthermore reduces the technical requirements to apply PECD in analytical chemistry.

11.
Angew Chem Int Ed Engl ; 58(22): 7464-7469, 2019 05 27.
Article in English | MEDLINE | ID: mdl-30870571

ABSTRACT

Due to their high kinetic inertness and consequently reduced side reactions with biomolecules, PtIV complexes are considered to define the future of anticancer platinum drugs. The aqueous stability of a series of biscarboxylato PtIV complexes was studied under physiologically relevant conditions. Unexpectedly and in contrast to the current chemical understanding, especially oxaliplatin and satraplatin complexes underwent fast hydrolysis in equatorial position (even in cell culture medium and serum). Notably, the resulting hydrolysis products strongly differ in their reduction kinetics, a crucial parameter for the activation of PtIV drugs, which also changes the anticancer potential of the compounds in cell culture. The discovery that intact PtIV complexes can hydrolyze at equatorial position contradicts the dogma on the general kinetic inertness of PtIV compounds and needs to be considered in the screening and design for novel platinum-based anticancer drugs.

12.
Phys Rev Lett ; 121(25): 253201, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608808

ABSTRACT

Using a model methanelike chiral system, we theoretically demonstrate a possibility to access photoelectron circular dichroism (PECD) by a single experiment with two overlapping laser pulses of carrier frequencies ω and 2ω, which are linearly polarized in two mutually orthogonal directions. Depending on the relative phase, the resulting electric field can be tailored to have two different rotational directions in the upper and lower hemispheres along the polarization of the ω pulse. We predict a strong forward-backward asymmetry in the emission of photoelectrons from randomly oriented samples, which has an opposite sign in the upper and lower hemispheres. The predicted PECD effect is phase and enantiomer sensitive, providing new insight in this fascinating fundamental phenomenon. The effect can be optimized by varying relative intensities of the pulses.

13.
J Chem Phys ; 147(1): 013926, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28688398

ABSTRACT

The intermediate state dependence of photoelectron circular dichroism (PECD) in resonance-enhanced multi-photon ionization of fenchone in the gas phase is experimentally studied. By scanning the excitation wavelength from 359 to 431 nm, we simultaneously excite up to three electronically distinct resonances. In the PECD experiment performed with a broadband femtosecond laser, their respective contributions to the photoelectron spectrum can be resolved. High-resolution spectroscopy allows us to identify two of the resonances as belonging to the B- and C-bands, which involve excitation to states with 3s and 3p Rydberg character, respectively. We observe a sign change in the PECD signal, depending on which electronic state is used as an intermediate, and are able to identify two differently behaving contributions within the C-band. Scanning the laser wavelength reveals a decrease of PECD magnitude with increasing photoelectron energy for the 3s state. Combining the results of high-resolution spectroscopy and femtosecond experiment, the adiabatic ionization potential of fenchone is determined to be IPaFen=(8.49±0.06) eV.

14.
Chemphyschem ; 17(8): 1119-22, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-26836316

ABSTRACT

Photoelectron circular dichroism (PECD) is experimentally investigated with chiral specimens with varying amounts of enantiomeric excess (ee). As a prototype, we measure and analyze the photoelectron angular distribution from randomly oriented fenchone molecules in the gas phase that result from ionization with circularly polarized femtosecond laser pulses. The quantification of these measurements shows a linear dependence with respect to the ee values. In addition, differences in the ee values (denoted as detection limit) of below one percent can be distinguished for nearly enantiopure samples, as well as for almost racemates. In combination with the use of a reference, the assignment of absolute ee values is possible. The present measurement time is a few minutes, but this could be reduced. This table-top laser-based approach should facilitate widespread implementation in chiral analysis.

15.
Phys Rev Lett ; 108(3): 033201, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22400738

ABSTRACT

We introduce soft recollisions in laser-matter interaction. They are characterized by the electron missing the ion upon recollision in contrast with the well-known head-on collisions responsible for high-harmonic generation or above-threshold ionization. We demonstrate analytically that soft recollisions can cause a bunching of photoelectron energies through which a series of low-energy peaks emerges in the electron yield along the laser polarization axis. This peak sequence is universal, it does not depend on the binding potential, and is found below an excess energy of one tenth of the ponderomotive energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...