Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 281(4): 719-39, 1998 Aug 28.
Article in English | MEDLINE | ID: mdl-9710542

ABSTRACT

Desulfovibrio vulgaris cytochrome c3 is a 14 kDa tetrahaem cytochrome that plays a central role in energy transduction. The three-dimensional structure of the ferrocytochrome at pH 8.5 was solved through two-dimensional 1H-NMR. The structures were calculated using a large amount of experimental information, which includes upper and lower distance limits as well as dihedral angle restraints. The analysis allows for fast-flipping aromatic residues and flexibility in the haem plane. The structure was determined using 2289 upper and 2390 lower distance limits, 63 restricted ranges for the phi torsion angle, 88 stereospecific assignments out of the 118 stereopairs with non-degenerate chemical shifts (74.6%), and 115 out of the 184 nuclear Overhauser effects to fast-flipping aromatic residues (62.5%), which were pseudo-stereospecifically assigned to one or the other side of the ring. The calculated NMR structures are very well defined, with an average root-mean-square deviation value relative to the mean coordinates of 0.35 A for the backbone atoms and 0.70 A for all heavy-atoms. Comparison of the NMR structures of the ferrocytochrome at pH 8.5 with the available X-ray structure of the ferricytochrome at pH 5.5 reveals that the general fold of the molecule is very similar, but that there are some distinct differences. Calculation of ring current shifts for the residues with significantly different conformations confirms that the NMR structures represent better its solution structure in the reduced form. Some of the localised differences, such as a reorientation of Thr24, are thought to be state-dependent changes that involve alterations in hydrogen bond networks. An important rearrangement in the vicinity of the propionate groups of haem I and involving the covalent linkage of haem II suggests that this is the critical region for the functional cooperativities of this protein.


Subject(s)
Cytochrome c Group/chemistry , Desulfovibrio vulgaris/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Crystallography, X-Ray , Heme/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Folding , Protein Structure, Secondary
2.
Biochemistry ; 34(31): 9851-8, 1995 Aug 08.
Article in English | MEDLINE | ID: mdl-7632685

ABSTRACT

The NMR solution structure of the oxidized HiPIP from Chromatium vinosum has been solved. Despite the fact that the protein is paramagnetic, 85% of the 1H and 80% of the 15N signals have been assigned. Through 1537 NOEs, out of which 1142 were found to be relevant for the structure determination, a family of structures has been obtained by distance geometry calculations. These structures have then been subjected to restrained energy minimization (REM) and restrained molecular dynamics (RMD) calculations in vacuum. Finally, the mean structure of the RMD family has been treated through RMD in water. The RMSD values for the backbone and heavy atoms within the RMD family are 0.57 +/- 0.14 and 1.08 +/- 0.16 A, respectively. These values together with other parameters indicate that the structure is of good quality and as good as the structure of the reduced protein. The RMDw structures of the reduced and oxidized proteins are different beyond the experimental indetermination. The set of constraints for the reduced and oxidized forms have been used to treat the available X-ray structure by RMD in water. The two structures generated in this way are quite similar to their respective solution structures, thus confirming that the experimental constraints are capable of yielding two different structures from the same starting structural model. This is the first time that independently determined solution structures of two redox states of a paramagnetic protein are available. Differences between them and the X-ray structure are discussed.


Subject(s)
Bacterial Proteins/chemistry , Chromatium/chemistry , Iron-Sulfur Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins , Amino Acid Sequence , Computer Simulation , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Protein Conformation , Solutions
3.
Biochemistry ; 34(1): 206-19, 1995 Jan 10.
Article in English | MEDLINE | ID: mdl-7819198

ABSTRACT

The 1H NMR assignment of the reduced HiPIP from Chromatium vinosum available in the literature [Gaillard, J., Albrand, J.-P., Moulis, J.-M., & Wemmer, D. E. (1992) Biochemistry 31, 5632-5639] has been extended up to 85% of the total protein protons. Ninety percent of the nitrogens have been assigned. Then the solution structure has been obtained using as many as 1147 meaningful NOE connectivities. The protein is sizably paramagnetic even though the ground state is a singlet. Nevertheless, the final RMSD values are 0.62 and 1.19 A for the backbone and the heavy atoms, respectively. These values compare well with those for diamagnetic proteins of the same size. The solution structure is discussed in the light of the available structural information from X-ray data.


Subject(s)
Bacterial Proteins/chemistry , Chromatium/chemistry , Iron-Sulfur Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins , Amino Acid Sequence , Crystallography, X-Ray , Hydrogen , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Nitrogen Isotopes , Oxidation-Reduction , Protein Conformation , Solutions
4.
Eur J Biochem ; 225(2): 703-14, 1994 Oct 15.
Article in English | MEDLINE | ID: mdl-7957186

ABSTRACT

A 1H and 15N NMR investigation through two-dimensional and three-dimensional spectroscopy has been performed on the reduced form ([Fe4S4]2+) of the recombinant high-potential iron-sulfur protein (HiPIP) I from Ectothiorhodospira halophila expressed in Escherichia coli. [Fe4S4]2+ clusters in proteins are paramagnetic with a relatively low mu eff of about 0.8 mu B/iron ion, but the paramagnetic effects on nuclear relaxation are so strong as to yield T1 values of a few milliseconds and linewidths of hundreds of hertz for the nuclei closet to the paramagnetic center. Despite these features, 71 out of 73 residues were identified, most of which were assigned completely as far as proton resonances are concerned; as many as 68 residues could be assigned without any reference to the existing X-ray structure. A total of 88% of all protein protons and 58 out of 69 peptide HN nitrogen signals were assigned. To the best of our knowledge, this is the most extensive 1H assignment of a paramagnetic protein to date. Protons sensitive to the proximity of the cluster were assigned through suitable NOE spectroscopy experiments. Three out of the four coordinated cysteines were assigned, and two residues have been identified whose peptide HN protons give rise to H bonds with coordinated sulfur atoms. The inter-residue NOE cross peaks are in qualitative agreement with the secondary and tertiary structure as obtained from the available X-ray crystallographic analysis of the wild-type protein at 250-pm resolution. It is therefore shown that the expressed protein is properly folded and that it is a reliable model for the wild-type protein. These data are meaningful for the detection of structural differences among mutants in future studies.


Subject(s)
Bacteria/chemistry , Bacterial Proteins/chemistry , Iron-Sulfur Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins , Amino Acid Sequence , Bacterial Proteins/genetics , Escherichia coli/genetics , Gene Expression , Iron-Sulfur Proteins/genetics , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Nitrogen Isotopes , Oxidation-Reduction , Protons , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Transfection
5.
Eur J Biochem ; 225(2): 715-25, 1994 Oct 15.
Article in English | MEDLINE | ID: mdl-7957187

ABSTRACT

The three-dimensional structure in solution of reduced recombinant high-potential iron-sulfur protein iso-I from Ectothiorhodospira halophila was determined using 948 relevant interproton NOEs out of the 1246 observed NOEs. The determination was accomplished using the XEASY program for spectral analysis and the distance geometry (DG) program DIANA for generation of the structure as described by Wüthrich [Wüthrich, K. (1989) Acc. Chem. Res. 22, 36-44]. The FeS cluster was simulated using an amino acid residue constructed for the present work from a cysteinyl residue with an iron and a sulfur atom attached to the terminal thiol. The family of structures obtained from distance geometry were subjected to energy minimization and molecular dynamics simulations using previously defined force field parameters. The quality of these structures at each stage of the refinement process is discussed with respect to the dihedral angle order parameter and the root-mean-square deviation of the atomic coordinates. The latter values for the backbone atoms vary from 67 pm for the distance-geometry structures to 60 pm for the energy-minimized structures to 51 pm for the structures subjected to restrained molecular dynamics. Finally, the structure in best agreement with the NOE constraints has been further treated with extensive restrained molecular dynamics in water. The solution structure is well defined and is very similar to the available X-ray structure. We do not know of any previous determination of the structure of a paramagnetic protein in solution by NMR. The effect of paramagnetism on the quality of the structure determination is discussed.


Subject(s)
Bacteria/chemistry , Bacterial Proteins/chemistry , Iron-Sulfur Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins , Protein Structure, Tertiary , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Magnetics , Molecular Structure , Protein Conformation , Solutions
6.
Eur J Biochem ; 222(2): 293-303, 1994 Jun 01.
Article in English | MEDLINE | ID: mdl-8020468

ABSTRACT

The nitric oxide reductase (NOR) from Pseudomonas stutzeri is a cytochrome bc complex which shows on SDS/PAGE two subunits with apparent molecular masses of 17 kDa and 38 kDa. Two other species of approximately 45 kDa and 74-78 kDa represent the undissociated enzyme complex and an aggregate of the cytochrome b subunit, respectively. The cytochrome b subunit is highly hydrophobic and results in aberrant electrophoretic mobility. The stability of the enzyme in various detergents and at different pH was investigated. The highest specific activity of 60 mumol NO min-1 mg-1 protein was obtained after electrophoresis in the presence of laurylpropanediol-3-phosphorylcholine ether. Purified NOR contained cardiolipin, phosphatidylglycerol, and phosphatidylethanolamine, the latter as the major component. A phospholipid was required for high catalytic activity with either cardiolipin or phosphatidylglycerol increasing the activity of the enzyme as isolated by a factor of up to 5. Free fatty acids inhibited NOR, with cis-9-octadecenoic acid (oleic acid) showing the most pronounced effect. Certain detergents substituted for the phospholipid requirement of NOR. The enzyme, as isolated, in 0.1% Triton X-100, 20 mM Tris/HCl pH 8.5, exhibited a complex set of EPR resonances at low magnetic field, with a prominent peak at g 6.34 resulting from Fe(III) high-spin cytochrome b. The second prominent feature arose from a low-spin Fe(III) heme center with strong lines at apparent g values of 3.02 and 2.29, and a broad resonance at g approximately 1.5 which we assigned to the cytochrome c component of the enzyme. From spin quantitation and computer simulations of the various EPR signals a ratio close to 1:1 for the low-spin/high-spin heme centers in NOR was estimated. Shifting the pH from 8.5 to 5.0, replacing Triton X-100 by other detergents, or adding soybean phospholipids to the protein, led to pronounced changes of the EPR signals in the g = 6 region. In contrast, the strong inhibitor oleic acid did not cause significant spectral changes. NOR which had been reduced by L-ascorbate/phenazine methosulfate prior to incubation with its substrate NO gave the characteristic Fe(II) nitrosyl triplet centered at g approximately 2.01, with a hyperfine splitting of 1.70 mT. In the absence of dioxygen, NOR was quantitatively reduced by either sodium dithionite, or photochemically with deazaflavin and oxalate; the enzyme was reoxidizable by ferricyanide in a fully reversible reaction. Spectroelectrochemical oxidoreductive titrations gave E'o (versus standard hydrogen electrode) = +322 mV for the cytochrome b and +280 mV for the cytochrome c component.


Subject(s)
Oxidoreductases/metabolism , Phospholipids/pharmacology , Pseudomonas/enzymology , Chromatography, Gel , Chromatography, Ion Exchange , Detergents/pharmacology , Electron Spin Resonance Spectroscopy/methods , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Kinetics , Macromolecular Substances , Molecular Weight , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/isolation & purification , Potentiometry , Spectrophotometry
7.
Eur J Biochem ; 209(3): 875-81, 1992 Nov 01.
Article in English | MEDLINE | ID: mdl-1330560

ABSTRACT

The multicopper proteins, nitrous-oxide reductase (N2OR) and cytochrome c oxidase (COX), were investigated by EPR spectroscopy at microwave frequencies 2.4-35 GHz. Our results support a Cu-Cu interaction in COX and N2OR. At least 10 lines in the 2.7-GHz, 12 lines in the 4.6-GHz and 14 lines in the 9.2 GHz spectra were resolved for N2OR. Eight copper lines at 2.7 GHz, about nine lines at 4.6 GHz and about six lines at 9.2 GHz were resolved for COX. Simulations of the EPR spectra were consistent with most of the resonances of the multiline spectra, including regions in the center of the spectra where overlap of the three seven-line patterns is proposed. These simulations indicated that Cu-Cu interaction, in a mixed-valence [Cu(1.5) ... Cu(1.5)], S = 1/2 site is consistent with, if not proof of, the unusual spectral features observed for N2OR and COX.


Subject(s)
Copper/chemistry , Electron Transport Complex IV/chemistry , Oxidoreductases/chemistry , Animals , Cattle , Electron Spin Resonance Spectroscopy , Myocardium/enzymology , Paracoccus denitrificans/enzymology , Pseudomonas/enzymology
8.
FEBS Lett ; 268(1): 274-6, 1990 Jul 30.
Article in English | MEDLINE | ID: mdl-2166686

ABSTRACT

Multifrequency electron paramagnetic resonance (EPR) spectra of the Cu(II) site in bovine heart cytochrome c oxidase (COX) and nitrous oxide reductase (N2OR) from Pseudomonas stutzeri confirm the existence of Cu-Cu interaction in both enzymes. C-band (4.5 GHz) proves to be a particularly good frequency complementing the spectra of COX and N2OR recorded at 2.4 and 3.5 GHz. Both the high and low field region of the EPR spectra show the presence of a well-resolved 7-line pattern consistent with the idea of a binuclear Cu center in COX and N2OR. Based on this assumption consistent g-values are calculated for gz and gx at four frequencies. No consistent g-values are obtained with the assumption of a 4-line pattern indicative for a mononuclear Cu site.


Subject(s)
Copper/metabolism , Electron Transport Complex IV/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cattle , Electron Spin Resonance Spectroscopy , Molecular Sequence Data , Myocardium/enzymology , Oxidoreductases , Pseudomonas/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...