Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563223

ABSTRACT

In the present study, we studied the effect of apolipoprotein A-1 (APOA1) on the spatial and molecular characteristics of bone marrow adipocytes, using well-characterized ApoA1 knockout mice. APOA1 is a central regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, and thus HDL; our recent work showed that deficiency of APOA1 increases bone marrow adiposity in mice. We found that ApoA1 deficient mice have greatly elevated adipocytes within their bone marrow compared to wild type counterparts. Morphologically, the increased adipocytes were similar to white adipocytes, and displayed proximal tibial-end localization. Marrow adipocytes from wild type mice were significantly fewer and did not display a bone-end distribution pattern. The mRNA levels of the brown/beige adipocyte-specific markers Ucp1, Dio2, Pat2, and Pgc1a; and the expression of leptin were greatly reduced in the ApoA1 knock-out in comparison to the wild-type mice. In the knock-out mice, adiponectin was remarkably elevated. In keeping with the close ties of hematopoietic stem cells and marrow adipocytes, using flow cytometry we found that the elevated adiposity in the ApoA1 knockout mice is associated with a significant reduction in the compartments of hematopoietic stem cells and common myeloid, but not of the common lymphoid, progenitors. Moreover, the 'beiging'-related marker osteopontin and the angiogenic factor VEGF were also reduced in the ApoA1 knock-out mice, further supporting the notion that APOA1-and most probably HDL-C-regulate bone marrow microenvironment, favoring beige/brown adipocyte characteristics.


Subject(s)
Adipocytes, Beige , Apolipoprotein A-I , Adipocytes, Beige/metabolism , Adipocytes, White/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Bone Marrow/metabolism , Mice , Mice, Knockout , Obesity/metabolism
2.
Clin Sarcoma Res ; 9: 8, 2019.
Article in English | MEDLINE | ID: mdl-31114671

ABSTRACT

BACKGROUND: Uncoupling protein 1 (UCP1) is a mitochondral protein transporter that uncouples electron transport from ATP production. UCP1 is highly expressed in brown adipose tissue (BAT), including hibernomas, but its expression in other adipose tumours is uncertain. UCP1 has also been found in other tissues (e.g. smooth muscle) but whether it is expressed in non-adipose benign and malignant soft tissue tumours is unknown. METHODS: Immunohistochemical staining of normal (axillary) BAT and subcutaneous/abdominal white adipose tissue (WAT) as well as a wide range of benign and malignant primary soft tissue tumours (n = 171) was performed using a rabbit polyclonal antibody to UCP1. BAT and hibernomas were also stained by immunohistochemistry with monoclonal and polyclonal antibodies to adipose/non-adipose tumour markers in order to characterise the immunophenotype of BAT cells. RESULTS: UCP1 was strongly expressed in the cytoplasm of brown fat cells in BAT and hibernomas, both of which also expressed aP2, S100, CD31, vimentin and calponin. UCP1 was not expressed in WAT or other adipose tumours with the exception a few tumour cells in pleomorphic liposarcoma. UCP1 was variably expressed by tumour cells in a few non-adipose sarcomas including leiomyosarcoma, rhabdomyosarcoma, alveolar soft part sarcoma, synovial sarcoma and clear cell sarcoma. CONCLUSIONS: UCP1 is strongly expressed in BAT but not WAT and is found in all hibernomas and a few pleomorphic liposarcomas but not in other adipose tumours. UCP1 expression in a few non-adipose soft tissue sarcomas may possibly reflect origin of tumour cells from a common mesenchymal stem cell precursor and/or developmental pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...