Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 16(11): 2276-2288, 2018 11.
Article in English | MEDLINE | ID: mdl-30176116

ABSTRACT

Essentials Activated clotting factor X (FXa) acquires fibrinolytic cofactor function after cleavage by plasmin. FXa-mediated plasma fibrinolysis is enabled by active site modification blocking a second cleavage. FXa-directed oral anticoagulants (DOACs) alter FXa cleavage by plasmin. DOACs enhance FX-dependent fibrinolysis and plasmin generation by tissue plasminogen activator. BACKGROUND: When bound to an anionic phospholipid-containing membrane, activated clotting factor X (FXa) is sequentially cleaved by plasmin from the intact form, FXaα, to FXaß and then to Xa33/13. Tissue-type plasminogen activator (t-PA) produces plasmin and is the initiator of fibrinolysis. Both FXaß and Xa33/13 enhance t-PA-mediated plasminogen activation. Although stable in experiments using purified proteins, Xa33/13 rapidly loses t-PA cofactor function in plasma. Bypassing this inhibition, covalent modification of the FXaα active site prevents Xa33/13 formation by plasmin, and the persistent FXaß enhances plasma fibrinolysis. As the direct oral anticoagulants (DOACs) rivaroxaban and apixaban bind to the FXa active site, we hypothesized that they similarly modulate FXa fibrinolytic function. METHODS: DOAC effects on fibrinolysis and the t-PA cofactor function of FXa were studied in patient plasma, normal pooled plasma and purified protein experiments by the use of light scattering, chromogenic assays, and immunoblots. RESULTS: The plasma of patients taking rivaroxaban showed enhanced fibrinolysis correlating with FXaß. In normal pooled plasma, the addition of rivaroxaban or apixaban also shortened fibrinolysis times. This was related to the cleavage product, FXaß, which increased plasmin production by t-PA. It was confirmed that these results were not caused by DOACs affecting activated FXIII-mediated fibrin crosslinking, clot ultrastructure and thrombin-activatable fibrinolysis inhibitor activation in plasma. CONCLUSION: The current study suggests a previously unknown effect of DOACs on FXa in addition to their well-documented anticoagulant role. By enabling the t-PA cofactor function of FXaß in plasma, DOACs also enhance fibrinolysis. This effect may broaden their therapeutic indications.


Subject(s)
Factor Xa/chemistry , Pyrazoles/pharmacology , Pyridones/pharmacology , Rivaroxaban/pharmacology , Administration, Oral , Anticoagulants/chemistry , Blood Coagulation/drug effects , Catalytic Domain , Cross-Linking Reagents/chemistry , Factor Xa Inhibitors/pharmacology , Fibrin/chemistry , Fibrinolysin/chemistry , Fibrinolysis , Humans , Phospholipids/chemistry , Thrombin/chemistry , Thrombolytic Therapy , Thrombosis , Tissue Plasminogen Activator/chemistry
2.
J Thromb Haemost ; 16(6): 1226-1235, 2018 06.
Article in English | MEDLINE | ID: mdl-29573326

ABSTRACT

Essentials Platelet transfusions can have limited efficacy during hemorrhage associated with coagulopathy. Thrombin can be shielded by encapsulation into nanoliposomes and delivered to platelets ex vivo. Loading platelets with liposomal thrombin improved several aspects of platelet coagulability. Platelets loaded with liposomal thrombin can overcome some coagulopathic deficiencies in vitro. SUMMARY: Background Platelets are integral to clot formation and are often transfused to stop or prevent bleeding. However, transfusions of platelets are not always effective, particularly in the most severe cases of hemorrhage. Nanoparticle systems have been developed to mimic platelets but inherently lack important aspects of platelet function, which limits their potential effectiveness. Objectives Increasing the natural coagulability of transfusable platelets could increase their efficacy during treatment of severe hemorrhage. Thrombin is a potent platelet agonist that currently cannot be used intravenously because of the risk of thrombosis. We hypothesized that delivery of thrombin to ex vivo platelets via liposomal encapsulation would enable transfusable platelets to become more coagulable in response to platelet agonists. Methods Thrombin was encapsulated into nanoliposomes and delivered to platelets ex vivo. Platelet coagulability was measured by monitoring platelet activation, clot contraction, clot time and clot stability in several in vitro assays. These parameters were also measured under conditions where coagulation is compromised, including during acidosis, antiplatelet drugs, hemophilia A and trauma-induced coagulopathy. Results Liposomal thrombin was endocytosed and used by platelets ex vivo but was not secreted upon activation. These modified platelets became more sensitive and responsive to agonists and improved clotting time even under conditions that normally cause platelet dysfunction or have impaired coagulation. Conclusions Several aspects of platelet function were enhanced by ex vivo delivery of liposomal thrombin.


Subject(s)
Blood Coagulation , Blood Platelets/metabolism , Platelet Activation , Platelet Transfusion , Thrombin/metabolism , Blood Coagulation/drug effects , Blood Platelets/drug effects , Clot Retraction , Endocytosis , Humans , Liposomes , Nanoparticles , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Time Factors
3.
J Thromb Haemost ; 14(9): 1844-54, 2016 09.
Article in English | MEDLINE | ID: mdl-27359348

ABSTRACT

UNLABELLED: Essentials Factor Xa (FXa) acquires cleavage-mediated tissue plasminogen activator (tPA) cofactor activity. Recombinant (r) tPA is the predominant thrombolytic drug, but it may cause systemic side effects. Chemically modified, non-enzymatic FXa was produced (Xai-K), which rapidly lysed thrombi in mice. Unlike rtPA, Xai-K had no systemic fibrinolysis activation markers, indicating improved safety. SUMMARY: Background Enzymatic thrombolysis carries the risk of hemorrhage and re-occlusion must be evaded by co-administration with an anticoagulant. Toward further improving these shortcomings, we report a novel dual-functioning molecule, Xai-K, which is both a non-enzymatic thrombolytic agent and an anticoagulant. Xai-K is based on clotting factor Xa, whose sequential plasmin-mediated fragments, FXaß and Xa33/13, accelerate the principal thrombolytic agent, tissue plasminogen activator (tPA), but only when localized to anionic phospholipid. Methods The effect of Xai-K on fibrinolysis was measured in vitro by turbidity, thromboelastography and chromogenic assays, and measured in a murine model of occlusive carotid thrombosis by Doppler ultrasound. The anticoagulant properties of Xai-K were evaluated by normal plasma clotting assays, and in murine liver laceration and tail amputation hemostatic models. Results Xa33/13, which participates in fibrinolysis of purified fibrin, was rapidly inhibited in plasma. Cleavage was blocked at FXaß by modifying residues at the active site. The resultant Xai-K (1 nm) enhanced plasma clot dissolution by ~7-fold in vitro and was dependent on tPA. Xai-K alone (2.0 µg g(-1) body weight) achieved therapeutic patency in mice. The minimum primary dose of the tPA variant, Tenecteplase (TNK; 17 µg g(-1) ), could be reduced by > 30-fold to restore blood flow with adjunctive Xai-K (0.5 µg g(-1) ). TNK-induced systemic markers of fibrinolysis were not detected with Xai-K (2.0 µg g(-1) ). Xai-K had anticoagulant activity that was somewhat attenuated compared with a previously reported analogue. Conclusion These results suggest that Xai-K may ameliorate the safety profile of therapeutic thrombolysis, either as a primary or tPA/TNK-adjunctive agent.


Subject(s)
Factor Xa/analogs & derivatives , Factor Xa/administration & dosage , Thrombolytic Therapy , Tissue Plasminogen Activator/administration & dosage , Animals , Anticoagulants/chemistry , Female , Fibrinolysis , Hemostasis , Humans , Liver/metabolism , Mice , Patient Safety , Phospholipids/chemistry , Plasminogen/chemistry , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Tenecteplase , Thrombelastography , Thrombosis/therapy , Tissue Plasminogen Activator/metabolism , Treatment Outcome , Ultrasonography, Doppler
SELECTION OF CITATIONS
SEARCH DETAIL
...