Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37456137

ABSTRACT

AC16 cells are a transformed human cardiac cell line commonly used to study cardiomyocyte biology. We show that reduced proliferation and senescence markers can be robustly induced in AC16 cells cultured in low serum condition and treated with (i) low-dose doxorubicin, (ii) UV 254 nm, or (iii) H 2 O 2 exposure for up to 48 hours. Increased p21 (CDKN1A) and H2A.X variant histone (H2AX) levels serve as reliable molecular markers upon all three treatment conditions, but the up-regulation of another common senescence marker, p16 (CDKN2A) was not observed. A proteomics screen further shows that the loss of histones and the increased expression of thymidine kinases (TK1) are prominent features of AC16 cells under doxorubicin induced senescence.

2.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37456138

ABSTRACT

Transwell co-culture with human AC16 cardiomyocyte-like cells modifies the response of primary human ventricular fibroblasts to TGF-ß stimulation. Fibrotic response markers including collagen I (COL1A1) and ɑ-smooth muscle actin (ACTA2) are amplified in the presence of AC16 cells, whereas others including periostin (POSTN) and fibronectin (FN1) are suppressed. Similar modulation is observed when the ventricular fibroblasts are co-cultured with AC16 cells under baseline and induced senescence conditions. Given that the response to TGF-ß stimulation is commonly measured to study fibrotic signaling and drug treatments in vitro, the results here suggest that the effect of cellular crosstalk should be more broadly considered.

3.
Mol Omics ; 17(5): 796-808, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34328155

ABSTRACT

We performed total RNA sequencing and multi-omics analysis comparing skeletal muscle and cardiac muscle in young adult (4 months) vs. early aging (20 months) mice to examine the molecular mechanisms of striated muscle aging. We observed that aging cardiac and skeletal muscles both invoke transcriptomic changes in innate immune system and mitochondria pathways but diverge in extracellular matrix processes. On an individual gene level, we identified 611 age-associated signatures in skeletal and cardiac muscles, including a number of myokine and cardiokine encoding genes. Because RNA and protein levels correlate only partially, we reason that differentially expressed transcripts that accurately reflect their protein counterparts will be more valuable proxies for proteomic changes and by extension physiological states. We applied a computational data analysis workflow to estimate which transcriptomic changes are more likely relevant to protein-level regulation using large proteogenomics data sets. We estimate about 48% of the aging-associated transcripts predict protein levels well (r ≥ 0.5). In parallel, a comparison of the identified aging-regulated genes with public human transcriptomics data showed that only 35-45% of the identified genes show an age-dependent expression in corresponding human tissues. Thus, integrating both RNA-protein correlation and human conservation across data sources, we nominate 134 prioritized aging striated muscle signatures that are predicted to correlate strongly with protein levels and that show age-dependent expression in humans. The results here reveal new details into how aging reshapes gene expression in striated muscles at the transcript and protein levels.


Subject(s)
Muscle, Striated , Transcriptome , Aging/genetics , Animals , Mice , Muscle, Skeletal , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...