Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(16): 14597-14609, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37125131

ABSTRACT

The effect of the presence of divalent and trivalent metal ions in solutions upon DNA packaging induced by the photosensitive azobenzene-containing surfactant is considered. It has been shown that the addition of divalent and trivalent metal ions does not affect the DNA-surfactant interaction for both the cis- and the trans-isomers of the surfactant. At the same time, the ionic strength of the solution, which is provided by a certain concentration of the salt, has a huge impact. It affects the association of surfactant molecules with each other and their binding to DNA. It has been shown by computer simulation that cobalt hexamine is attracted to the N7 atom of guanine in the major groove of DNA and does not penetrate into grooves near the AT base pairs.

2.
Langmuir ; 38(50): 15776-15781, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36473190

ABSTRACT

The attachment of functional DNA to gold nanoparticles via polyadenine adsorption is a well-established technology. This approach was mainly viewed through the lens of changing the DNA charge in order to reduce the electrostatic barrier created by a similarly charged gold surface. However, altering the DNA charge results in the loss of its functionality. This work considers the adsorption process of polyadenines by force that artificially brings them closer to the surface. As a force source, we used the hybridization of a DNA strand carrying polyadenines with a complementary strand already attached to the surface. It was shown that the hybridization forces facilitated the adsorption of polyadenines. We believe that this approach is applicable in various areas where it is essential to preserve the functionality of DNA during conjugation with nanoparticles.


Subject(s)
Metal Nanoparticles , Nanoparticles , Gold , Adsorption , DNA , Surface Properties
3.
Eur Biophys J ; 51(4-5): 325-333, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35546203

ABSTRACT

The study of the aggregation of amyloid proteins is challenging. A new approach to processing dynamic light scattering data was developed and tested using aggregates of the well-known model Sup35NM amyloid. After filtering and calculating the moving averages of autocorrelation functions to reduce impacts of noise, each averaged autocorrelation function is converted to the fibril length distribution via numerical modeling. The processing results were verified using atomic force and scanning electron microscopy data. Analysis of fibril length distribution changes over time gives valuable information about the aggregation process.


Subject(s)
Amyloid beta-Peptides , Amyloid , Amyloid/metabolism , Dynamic Light Scattering , Microscopy, Atomic Force/methods
4.
J Phys Chem B ; 125(40): 11197-11207, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34586822

ABSTRACT

The DNA interaction with cis-isomers of photosensitive azobenzene-containing surfactants was studied by both experimental methods and computer simulation. It was shown that before the organization of micelles, such surfactants in the cis-conformation form associates of only a single type with a disordered orientation of molecules. In contrast, for trans-isomers, there exist two types of associates with head-to-head or head-to-tail orientations of molecules in dependence on salt concentration in a solution. The comparison of cis- and trans-isomer binding to DNA and the influence of salt concentration on the formation of their complexes with DNA were studied. It was shown that cis-isomers interact with phosphate groups of DNA and that their molecules were also located along the minor groove of DNA.


Subject(s)
Sodium Chloride , Surface-Active Agents , Azo Compounds , Computer Simulation , DNA
5.
Nanotechnology ; 32(4): 045604, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33045696

ABSTRACT

Nanostructures synthesized using DNA-conjugated gold nanoparticles have a wide range of applications in the field of biosensorics. The stability of the DNA duplex plays a critical role as it determines the final geometry of these nanostructures. The main way to control DNA stability is to maintain a high ionic strength of the buffer solution; at the same time, high salt concentrations lead to an aggregation of nanoparticles. In this study, by means of the instrumentality of DNA-bridged seeds using tris(hydroxymethyl)aminomethane as a soft reducing agent the dumbbell-like gold nanoparticles up to 35 nm were synthesized with a high concentration of sodium ions of up to 100 mM and magnesium ions up to 1 mM. We also examined at the atomic level the details of the effect of the gold nanoparticle surface, as well as Na+ and Mg2+ ions, on the stability of nucleotide pairs located in close proximity to the grafting site.


Subject(s)
DNA/chemistry , Gold/chemistry , Magnesium/chemistry , Metal Nanoparticles/chemistry , Sodium/chemistry , DNA/analysis , Osmolar Concentration
6.
ACS Omega ; 5(29): 18234-18243, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32743199

ABSTRACT

The photosensitive azobenzene-containing surfactant C4-Azo-OC6TMAB is a promising agent for reversible DNA packaging in a solution. The simulation of the trans-isomer surfactant organization into associates in a solution with and without salt as well as its binding to DNA at different NaCl concentrations was carried out by molecular dynamics. Experimental data obtained by spectral and hydrodynamic methods were used to verify the results of simulation. It was shown that head-to-tail aggregates with close to antiparallel orientation of surfactant molecules were formed at certain NaCl and surfactant concentrations (below critical micelle concentration). Such aggregates have two positively charged ends, and therefore, they can be attracted to negatively charged DNA phosphates far located along the chain, as well as those that belong to different molecules. This contributes to the formation of intermolecular DNA-DNA contacts, and this way, the experimentally observed precipitation of DNA can be explained.

7.
Front Mol Neurosci ; 12: 274, 2019.
Article in English | MEDLINE | ID: mdl-31803017

ABSTRACT

A number of [PSI +]-no-more (PNM) mutations, eliminating [PSI +] prion, were previously described in SUP35. In this study, we designed and analyzed a new PNM mutation based on the parallel in-register ß-structure of Sup35 prion fibrils suggested by the known experimental data. In such an arrangement, substitution of non-charged residues by charged ones may destabilize the fibril structure. We introduced Q33K/A34K amino acid substitutions into the Sup35 protein, corresponding allele was called sup35-M0. The mutagenized residues were chosen based on ArchCandy in silico prediction of high inhibitory effect on the amyloidogenic potential of Sup35. The experiments confirmed that Sup35-M0 leads to the elimination of [PSI +] with high efficiency. Our data suggested that the elimination of the [PSI +] prion is associated with the decreased aggregation properties of the protein. The new mutation can induce the prion with very low efficiency and is able to propagate only weak [PSI +] prion variants. We also showed that Sup35-M0 protein co-aggregates with the wild-type Sup35 in vivo. Moreover, our data confirmed the utility of the strategy of substitution of non-charged residues by charged ones to design new mutations to inhibit a prion formation.

8.
J Phys Chem B ; 123(45): 9557-9566, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31622103

ABSTRACT

DNA integration with silver and gold nanoparticles was carried out by the chemical reduction of silver and gold ions after the formation of their complexes with high molecular DNA in solution. It is shown that, for a good association of DNA with nanoparticles, the ions of silver and gold should be linked with DNA bases rather strongly. The proposed model of gold interaction with DNA is the coordination of gold to N7 guanine in a major groove followed by the transformation of the GC pair to Hoogsteen's type pairing, in which the gold atom is located between the bases and is bonded simultaneously to N7 guanine and N3 cytosine. For gold and silver nanoparticles associated with DNA, the peak of plasmon resonance shifts relative to that of free nanoparticles in solution. AFM (atomic force microscopy) images of both free and associated with DNA nanoparticles were obtained. Binding of high molecular DNA to gold and silver nanoparticles leads to a decrease in the size of its molecular coil in solution, but the bending rigidity of DNA helix (persistent length) does not change. The almost 3-fold increase in the optical anisotropy of DNA was observed when DNA was associated with gold nanoparticles. This result was obtained with the flow birefringence method using a light source with a wavelength of 550 nm, which is close to the peak of the plasmon resonance of gold nanoparticles. For DNA associated with silver nanoparticles, a similar result was obtained when using a light source with a wavelength of about 410 nm.


Subject(s)
DNA/metabolism , Metal Nanoparticles/chemistry , Anisotropy , Borohydrides/chemistry , DNA/chemistry , Gold/chemistry , Gold/metabolism , Nucleic Acid Conformation , Oxidation-Reduction , Silver/chemistry , Silver/metabolism , Viscosity
9.
ACS Omega ; 4(16): 16935-16942, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31646240

ABSTRACT

The interaction of cobalt phthalocyanine disodium disulfonate (CoPc) with calf thymus DNA in solutions was investigated by UV/vis spectrophotometry, circular dichroism (CD), and hydrodynamic methods (viscosity and flow birefringence). Two types of CoPc binding to DNA were observed. Fast CoPc interactions with DNA via external binding to phosphates were accompanied by the formation of stack-type phthalocyanine structures on the periphery of the DNA helix. The optical absorption spectra of such CoPc complexes with DNA were analyzed in order to obtain a binding constant K = (4.8 ± 0.4) × 104 M-1. CD spectra show the increasing optical activity of phthalocyanines bonded to DNA. DNA plays the role of a matrix, contributing to an increase in their stacking interactions. The CD spectrum of DNA varies slightly. The second type of cobalt-to-DNA binding manifests itself over a certain time. It can be associated with the reorganization of ligands in the cobalt coordination sphere by introducing DNA atoms. In our experiments, such binding was observed after storage of solutions for approximately 20 h at a temperature of 4 °C. It was shown that the minor groove of DNA remains free in CoPc-DNA complexes. CoPc does not bind with the most important group for metal coordinating to DNA in the major groove (N7 guanine). We completely excluded the intercalation binding model. The planes of phthalocyanines in CoPc-DNA complexes are oriented predominantly normal to the axis of the DNA helix. DNA rigidity (persistent length) does not change. This follows from the data on the measurement of the optical anisotropy and intrinsic viscosity of DNA in complexes.

10.
J Phys Chem B ; 123(9): 1896-1902, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30762356

ABSTRACT

The interaction of the regulatory biologically active peptide Glu-Asp-Arg (EDR) with DNA is considered by spectral, NMR, viscosimetry, and molecular dynamics methods. It was shown that EDR can partly penetrate into the major groove of DNA and affect the base atoms, mainly the N7 and O6 of guanine. It was observed that Mg2+ ions can promote DNA-EDR interaction due to their effective screening of the negatively charged phosphate groups of DNA. This action of Mg2+ remains in salted solution as well.


Subject(s)
DNA/metabolism , Magnesium/metabolism , Oligopeptides/metabolism , Sodium/metabolism , Animals , Cattle , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding
11.
Chemphyschem ; 14(15): 3543-50, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24106036

ABSTRACT

We study the formation and fluorescent properties of silver nanoclusters encapsulated in condensed DNA nanoparticles. Fluorescent globular DNA nanoparticles are formed using a dsDNA-cluster complex and polyallylamine as condensing agents. The fluorescence emission spectrum of single DNA nanoparticles is obtained using tip-enhanced fluorescence microscopy. Fluorescent clusters in condensed DNA nanoparticles appear to be more protected against destructive damage in solution compared to clusters synthesized on a linear polymer chain. The fluorescent clusters on both dsDNA and ssDNA exhibit the same emission bands (at 590 and 680 nm) and the same formation efficiency, which suggests the same binding sites. By using density functional theory, we show that the clusters may bind to the Watson-Crick guanine-cytosine base pairs and to single DNA bases with about the same affinity.


Subject(s)
DNA/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Polyamines/chemistry , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...