Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Tissue Eng Part A ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38062998

ABSTRACT

Three-dimensional (3D) bioprinting, a promising advancement in tissue engineering technology, involves the robotic, layer-by-layer additive biofabrication of functional 3D tissue and organ constructs. This process utilizes biomaterials, typically hydrogels and living cells, following digital models. Traditional tissue engineering uses a classic triad of living cells, scaffolds, and physicochemical signals in bioreactors. A scaffold is a temporary, often biodegradable, support structure. Tissue engineering primarily falls into two categories: (i) scaffold based and (ii) scaffold free. The latter, scaffold-free 3D bioprinting, is gaining increasing popularity. Organ building blocks (OBB), capable of self-assembly and self-organization, such as tissue spheroids, organoids, and assembloids, have begun to be utilized in scaffold-free bioprinting. This article discusses the expanding range of OBB, presents the rapidly evolving collection of bioprinting and bioassembly methods using these OBB, and finally, outlines the advantages, challenges, and future perspectives of using OBB in organ printing.

2.
J Mech Behav Biomed Mater ; 150: 106301, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141364

ABSTRACT

The precise mechanical properties of many tissues are highly dependent on both the composition and arrangement of the nanofibrous extracellular matrix. It is well established that collagen nanofibers exhibit a crimped microstructure in several tissues such as blood vessel, tendon, and heart valve. This collagen fiber arrangement results in the classic non-linear 'J-shaped' stress strain curve characteristic of these tissues. Synthetic biomimetic fibrous materials with a crimped microstructure similar to natural collagen demonstrate similar mechanical properties to natural tissues. The following work describes a nanofabrication method based on electrospinning used to fabricate two component hybrid electrospun fibrous materials that mimic the microstructure and mechanical properties of vascular tissue. The properties of these samples can be precisely and predictably optimized by modifying fabrication parameters. Tubular grafts with biomimetic microstructure were constructed to demonstrate the potential of this fabrication method in vascular graft replacement applications. It was possible to closely match both the overall geometry and the compliance of specific blood vessels by optimizing graft microstructure.


Subject(s)
Biomimetic Materials , Bioprosthesis , Nanofibers , Vascular Grafting , Biomimetics , Blood Vessel Prosthesis , Collagen , Biomimetic Materials/chemistry , Tissue Engineering/methods , Nanofibers/chemistry , Tissue Scaffolds/chemistry
3.
Int J Bioprint ; 9(2): 675, 2023.
Article in English | MEDLINE | ID: mdl-37065657

ABSTRACT

In situ bioprinting is one of the most clinically relevant techniques in the emerging bioprinting technology because it could be performed directly on the human body in the operating room and it does not require bioreactors for post-printing tissue maturation. However, commercial in situ bioprinters are still not available on the market. In this study, we demonstrated the benefit of the originally developed first commercial articulated collaborative in situ bioprinter for the treatment of full-thickness wounds in rat and porcine models. We used an articulated and collaborative robotic arm from company KUKA and developed original printhead and correspondence software enabling in situ bioprinting on curve and moving surfaces. The results of in vitro and in vivo experiments show that in situ bioprinting of bioink induces a strong hydrogel adhesion and enables printing on curved surfaces of wet tissues with a high level of fidelity. The in situ bioprinter was convenient to use in the operating room. Additional in vitro experiments (in vitro collagen contraction assay and in vitro 3D angiogenesis assay) and histological analyses demonstrated that in situ bioprinting improves the quality of wound healing in rat and porcine skin wounds. The absence of interference with the normal process of wound healing and even certain improvement in the dynamics of this process strongly suggests that in situ bioprinting could be used as a novel therapeutic modality in wound healing.

4.
Polymers (Basel) ; 14(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36501463

ABSTRACT

The concept of "lockyballs" or interlockable mini-scaffolds fabricated by two-photon polymerization from biodegradable polymers for the encagement of tissue spheroids and their delivery into the desired location in the human body has been recently introduced. In order to improve control of delivery, positioning, and assembly of mini-scaffolds with tissue spheroids inside, they must be functionalized. This review describes the design, fabrication, and functionalization of mini-scaffolds as well as perspectives on their application in tissue engineering for precisely controlled cell and mini-tissue delivery and patterning. The development of functionalized mini-scaffolds advances the original concept of "lockyballs" and opens exciting new prospectives for mini-scaffolds' applications in tissue engineering and regenerative medicine and their eventual clinical translation.

5.
Cell Tissue Res ; 390(3): 453-464, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36129531

ABSTRACT

In situ 3D bioprinting is a new emerging therapeutic modality for treating human skin diseases. The tissue spheroids have been previously suggested as a powerful tool in rapidly expanding bioprinting technology. It has been demonstrated that the regenerative potential of human dermal fibroblasts could be quantitatively evaluated in 2D cell culture and confirmed after implantation in vivo. However, the development of unbiassed quantitative criteria of the regenerative potential of 3D tissue spheroids in vitro before their in situ bioprinting remains to be investigated. Here it has been demonstrated for the first time that specific correlations exist between the regenerative potential of human dermal fibroblasts cultured in vitro as 2D cell monolayer with biological properties of 3D tissue spheroids fabricated from these fibroblasts. In vitro assessment of biological properties included diameter, spreading and fusion kinetics, and biomechanical properties of 3D tissue spheroids. This comprehensive characterization could be used to predict tissue spheroids' regenerative potential in vivo.


Subject(s)
Bioprinting , Spheroids, Cellular , Humans , Fibroblasts , Cell Culture Techniques , Skin , Tissue Engineering
6.
ACS Biomater Sci Eng ; 7(11): 5206-5214, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34610738

ABSTRACT

Magnetic tissue engineering is one of the rapidly emerging and promising directions of tissue engineering and biofabrication where the magnetic field is employed as temporal removal support or scaffold. Iron oxide nanoparticles are used to label living cells and provide the desired magnetic properties. Recently, polymer microcapsules loaded with iron oxide nanoparticles have been proposed as a novel approach to designing magnetic materials with high local concentrations. These microcapsules can be readily internalized and retained intracellularly for a long time in various types of cells. The low cytotoxicity of these microcapsules was previously shown in 2D cell culture. This paper has demonstrated that cells containing these nontoxic nanomaterials can form viable 3D tissue spheroids for the first time. The spheroids retained labeled fluorescent microcapsules with magnetic nanoparticles without a detectable cytotoxic effect. The high concentration of packed nanoparticles inside the microcapsules enables the evident magnetic properties of the labeled spheroids to be maintained. Finally, magnetic spheroids can be effectively used for magnetic patterning and biofabrication of tissue-engineering constructs.


Subject(s)
Magnetic Iron Oxide Nanoparticles , Polymers , Capsules , Magnetic Fields , Tissue Engineering
7.
Acta Biomater ; 118: 141-152, 2020 12.
Article in English | MEDLINE | ID: mdl-33045401

ABSTRACT

Cytoskeleton systems, actin microfilaments, microtubules (MTs) and intermediate filaments (IFs) provide the biomechanical stability and spatial organization in cells. To understand the specific contributions of each cytoskeleton systems to intrinsic properties of spheroids, we've scrutinized the effects of the cytoskeleton perturbants, cytochalasin D (Cyto D), nocodazole (Noc) and withaferin A (WFA) on fusion, spreading on adhesive surface, morphology and biomechanics of chondrospheres (CSs). We confirmed that treatment with Cyto D but not with Noc or WFA severely affected CSs fusion and spreading dynamics and significantly reduced biomechanical properties of cell aggregates. Noc treatment affected spheroids spreading but not the fusion and surprisingly enhanced their stiffness. Vimentin intermediate filaments (VIFs) reorganization affected CSs spreading only. The analysis of all three cytoskeleton systems contribution to spheroids intrinsic properties was performed for the first time.


Subject(s)
Cytoskeleton , Intermediate Filaments , Actin Cytoskeleton , Microtubules , Vimentin
8.
Adv Healthc Mater ; 9(24): e2000721, 2020 12.
Article in English | MEDLINE | ID: mdl-32809273

ABSTRACT

In traditional tissue engineering, synthetic or natural scaffolds are usually used as removable temporal support, which involves some biotechnology limitations. The concept of "scaffield" approach utilizing the physical fields instead of biomaterial scaffold has been proposed recently. In particular, a combination of intense magnetic and acoustic fields can enable rapid levitational bioassembly of complex-shaped 3D tissue constructs from tissue spheroids at low concentration of paramagnetic agent (gadolinium salt) in the medium. In the current study, the tissue spheroids from human bladder smooth muscle cells (myospheres) are used as building blocks for assembling the tubular 3D constructs. Levitational assembly is accomplished at low concentrations of gadolinium salts in the high magnetic field at 9.5 T. The biofabricated smooth muscle constructs demonstrate contraction after the addition of vasoconstrictive agent endothelin-1. Thus, hybrid magnetoacoustic levitational bioassembly is considered as a new technology platform in the emerging field of formative biofabrication. This novel technology of scaffold-free, nozzle-free, and label-free bioassembly opens a unique opportunity for rapid biofabrication of 3D tissue and organ constructs with complex geometry.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Biocompatible Materials , Biotechnology , Humans , Magnetic Fields , Spheroids, Cellular
9.
Sci Adv ; 6(29): eaba4174, 2020 07.
Article in English | MEDLINE | ID: mdl-32743068

ABSTRACT

Magnetic levitational bioassembly of three-dimensional (3D) tissue constructs represents a rapidly emerging scaffold- and label-free approach and alternative conceptual advance in tissue engineering. The magnetic bioassembler has been designed, developed, and certified for life space research. To the best of our knowledge, 3D tissue constructs have been biofabricated for the first time in space under microgravity from tissue spheroids consisting of human chondrocytes. Bioassembly and sequential tissue spheroid fusion presented a good agreement with developed predictive mathematical models and computer simulations. Tissue constructs demonstrated good viability and advanced stages of tissue spheroid fusion process. Thus, our data strongly suggest that scaffold-free formative biofabrication using magnetic fields is a feasible alternative to traditional scaffold-based approaches, hinting a new perspective avenue of research that could significantly advance tissue engineering. Magnetic levitational bioassembly in space can also advance space life science and space regenerative medicine.

10.
Cartilage ; 11(4): 521-531, 2020 10.
Article in English | MEDLINE | ID: mdl-30221989

ABSTRACT

OBJECTIVE: Chondrospheres represent a variant of tissue spheroids biofabricated from chondrocytes. They are already being used in clinical trials for cartilage repair; however, their biomechanical properties have not been systematically investigated yet. The aim of our study was to characterize chondrospheres in long-term in vitro culture conditions for morphometric changes, biomechanical integrity, and their fusion and spreading kinetics. RESULTS: It has been demonstrated that the increase in chondrospheres secant modulus of elasticity is strongly associated with the synthesis and accumulation of extracellular matrix. Additionally, significant interplay has been found between biomechanical properties of tissue spheroids and their fusion kinetics in contrast to their spreading kinetics. CONCLUSIONS: Extracellular matrix is one of the main structural determinants of chondrospheres biomechanical properties during chondrogenic maturation in vitro. The estimation of tissue spheroids' physical behavior in vitro prior to operative treatment can be used to predict and potentially control fusogenic self-assembly process after implantation in vivo.


Subject(s)
Chondrocytes/cytology , Chondrogenesis/physiology , Extracellular Matrix/physiology , Spheroids, Cellular/physiology , Tissue Engineering , Biomechanical Phenomena , Cells, Cultured , Humans , In Vitro Techniques
11.
Biofabrication ; 10(3): 034104, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29848793

ABSTRACT

Tissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids. Chondrospheres of standard size, shape and capable to fusion have been biofabricated from primary sheep chondrocytes using non-adhesive technology. Label-free magnetic levitation was performed using a prototype device equipped with permanent magnets in presence of gadolinium (Gd3+) in culture media, which enables magnetic levitation. Mathematical modeling and computer simulations were used for prediction of magnetic field and kinetics of tissue spheroids assembly into 3D tissue constructs. First, we used polystyrene beads to simulate the assembly of tissue spheroids and to determine the optimal settings for magnetic levitation in presence of Gd3+. Second, we proved the ability of chondrospheres to assemble rapidly into 3D tissue construct in the permanent magnetic field in the presence of Gd3+. Thus, scaffold- and label-free magnetic levitation of tissue spheroids is a promising approach for rapid 3D biofabrication and attractive alternative to label-based magnetic force-driven tissue engineering.


Subject(s)
Cell Culture Techniques/instrumentation , Magnetic Fields , Tissue Engineering/instrumentation , Animals , Chondrocytes/cytology , Computer Simulation , Equipment Design , Spheroids, Cellular/cytology
12.
Rom J Morphol Embryol ; 58(4): 1193-1200, 2017.
Article in English | MEDLINE | ID: mdl-29556608

ABSTRACT

The morphological and biomechanical peculiarities of the rectum observed in obstructed defecation syndrome (ODS) are not completely understood. The biomechanical properties and morphological features of the rectum in patients with ODS in correlation with the status of the enteric nervous system (ENS) were evaluated. Uniaxial tensile tests on the rectum samples of patients with ODS and controls were performed; collagenous constituents were assessed by Reticulin and Masson's trichrome stainings; the expressions of α-smooth muscle actin (α-SMA), S100 and CD117 labeling of interstitial cells of Cajal (ICCs) were investigated by immunohistochemistry. In both groups, the ultimate stress in the posterior rectal wall was statistically significantly higher compared to the anterior one. The ultimate strain was higher in ODS compared to controls. The tangential modulus of elasticity was significantly higher in the control group than in the ODS one, both in the anterior and posterior walls. A significantly higher density of collagen demonstrated throughout the wall was evidenced in controls compared to ODS. The mucosal muscular compartment was significantly thicker but more disorganized in the patients group. The enteric S100-positive glial cells were significantly reduced in number in the anterior wall, but elevated in the posterior wall of the rectum in ODS simultaneously demonstrating the higher numbers of ICCs within the entire muscular layer and myenteric. The biomechanical and morphological results show that the rectal wall in patients with ODS is more deformable and less rigid compared to controls. The results of biomechanical properties and morphological changes in the human rectum are essential when choosing the method of ODS treatment.


Subject(s)
Defecation/physiology , Immunohistochemistry/methods , Rectum/pathology , Female , Humans , Male
13.
PLoS One ; 11(11): e0166073, 2016.
Article in English | MEDLINE | ID: mdl-27829016

ABSTRACT

Adipose stem cells (ASCs) spheroids show enhanced regenerative effects compared to single cells. Also, spheroids have been recently introduced as building blocks in directed self-assembly strategy. Recent efforts aim to improve long-term cell retention and integration by the use of microencapsulation delivery systems that can rapidly integrate in the implantation site. Interlockable solid synthetic microscaffolds, so called lockyballs, were recently designed with hooks and loops to enhance cell retention and integration at the implantation site as well as to support spheroids aggregation after transplantation. Here we present an efficient methodology for human ASCs spheroids biofabrication and lockyballs cellularization using micro-molded non-adhesive agarose hydrogel. Lockyballs were produced using two-photon polymerization with an estimated mechanical strength. The Young's modulus was calculated at level 0.1362 +/-0.009 MPa. Interlocking in vitro test demonstrates high level of loading induced interlockability of fabricated lockyballs. Diameter measurements and elongation coefficient calculation revealed that human ASCs spheroids biofabricated in resections of micro-molded non-adhesive hydrogel had a more regular size distribution and shape than spheroids biofabricated in hanging drops. Cellularization of lockyballs using human ASCs spheroids did not alter the level of cells viability (p > 0,999) and gene fold expression for SOX-9 and RUNX2 (p > 0,195). The biofabrication of ASCs spheroids into lockyballs represents an innovative strategy in regenerative medicine, which combines solid scaffold-based and directed self-assembly approaches, fostering opportunities for rapid in situ biofabrication of 3D building-blocks.


Subject(s)
Adipose Tissue/cytology , Spheroids, Cellular/transplantation , Stem Cells/cytology , Tissue Scaffolds/chemistry , Adolescent , Adult , Cell Culture Techniques , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Elastic Modulus , Female , Gene Expression , Humans , Hydrogels/chemistry , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Middle Aged , Regenerative Medicine/methods , Reverse Transcriptase Polymerase Chain Reaction , SOX9 Transcription Factor/genetics , Sepharose/chemistry , Spheroids, Cellular/chemistry , Spheroids, Cellular/cytology , Stem Cell Transplantation/methods , Stem Cells/metabolism , Stem Cells/ultrastructure , Tissue Engineering/methods , Young Adult
14.
Biointerphases ; 10(2): 021011, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26104190

ABSTRACT

The modeling, fabrication, cell loading, and mechanical and in vitro biological testing of biomimetic, interlockable, laser-made, concentric 3D scaffolds are presented. The scaffolds are made by multiphoton polymerization of an organic-inorganic zirconium silicate. Their mechanical properties are theoretically modeled using finite elements analysis and experimentally measured using a Microsquisher(®). They are subsequently loaded with preosteoblastic cells, which remain live after 24 and 72 h. The interlockable scaffolds have maintained their ability to fuse with tissue spheroids. This work represents a novel technological platform, enabling the rapid, laser-based, in situ 3D tissue biofabrication.


Subject(s)
Cells, Immobilized/physiology , Osteoblasts/physiology , Tissue Engineering/methods , Tissue Scaffolds , Animals , Cell Line , Cell Survival , Lasers , Mice , Polymerization , Silicates , Stem Cells/physiology , Zirconium
15.
J Tissue Eng ; 5: 2041731414556561, 2014.
Article in English | MEDLINE | ID: mdl-25396042

ABSTRACT

Effective cell invasion into thick electrospun biomimetic scaffolds is an unsolved problem. One possible strategy to biofabricate tissue constructs of desirable thickness and material properties without the need for cell invasion is to use thin (<2 µm) porous electrospun meshes and self-assembling (capable of tissue fusion) tissue spheroids as building blocks. Pre-stretched electrospun meshes remained taut in cell culture and were able to support tissue spheroids with minimal deformation. We hypothesize that elastic electrospun scaffolds could be used as temporal support templates for rapid self-assembly of cell spheroids into higher order tissue structures, such as engineered vascular tissue. The aim of this study was to investigate how the attachment of tissue spheroids to pre-stretched polyurethane scaffolds may interfere with the tissue fusion process. Tissue spheroids attached, spread, and fused after being placed on pre-stretched polyurethane electrospun matrices and formed tissue constructs. Efforts to eliminate hole defects with fibrogenic tissue growth factor-ß resulted in the increased synthesis of collagen and periostin and a dramatic reduction in hole size and number. In control experiments, tissue spheroids fuse on a non-adhesive hydrogel and form continuous tissue constructs without holes. Our data demonstrate that tissue spheroids attached to thin stretched elastic electrospun scaffolds have an interrupted tissue fusion process. The resulting tissue-engineered construct phenotype is a direct outcome of the delicate balance of the competing physical forces operating during the tissue fusion process at the interface of the pre-stretched elastic scaffold and the attached tissue spheroids. We have shown that with appropriate treatments, this process can be modulated, and thus, a thin pre-stretched elastic polyurethane electrospun scaffold could serve as a supporting template for rapid biofabrication of thick tissue-engineered constructs without the need for cell invasion.

16.
Connect Tissue Res ; 54(6): 394-402, 2013.
Article in English | MEDLINE | ID: mdl-23869611

ABSTRACT

The aim of this study was to assess structural and biochemical differences in the extracellular matrix of the fetal and adult porcine mitral heart valves in relation to their mechanical characteristics. Using tensile tests it was demonstrated that the material properties of porcine mitral heart valves progressively change with age. The collagen content of the adult heart valve, as estimated by hydroxyproline assay, increases three times as compared with fetal heart valves. Transmission electron microscopy demonstrated that the diameter of collagen fibrils increased in adult heart valves compared with fetal heart valves. The level of collagen cross-linking is lower in the fetal heart valve than the adult heart valve. The reported age differences in the material properties of fetal and adult porcine heart valves were associated with increases in collagen content, the diameter of collagen fibrils and the level of collagen cross-linking. These data lay a foundation for systematic elucidation of the structural determinants of material properties of heart valves during embryonic and postnatal valvulogenesis. They are also essential to define the desirable level of tissue maturation in heart valve tissue engineering.


Subject(s)
Aging/physiology , Mitral Valve/anatomy & histology , Mitral Valve/physiology , Animals , Biomechanical Phenomena , Collagen/metabolism , Cross-Linking Reagents/metabolism , Fetus/anatomy & histology , Fetus/physiology , Mitral Valve/embryology , Mitral Valve/ultrastructure , Sus scrofa
17.
Interact Cardiovasc Thorac Surg ; 16(2): 129-33, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23117234

ABSTRACT

OBJECTIVES: Little is known about the stent deformability required for optimal stented heart valve bioprosthesis design. Therefore, two bioprosthetic valves with known good long-term clinical results were tested. The strain in the radial direction of the stent posts of these valves was compared with contemporary bioprosthetic valves and a native porcine aortic root. METHODS: Medtronic Intact and Carpentier-Edwards Standard (CES), and four contemporary bioprostheses, including one self-expanding prosthesis, were tested with three sonomicrometry probes per valve fixed at commissure attachment points. The mean values from 2400 data points from three measurements of the interprobe distances were used to calculate the radius of the circle circumscribed around the three probes. Changes in the radius of the aortic root at pressures 70-90 and 120-140 mmHg (pressure during diastole and systole) and that of the stent posts at 70-90 and 0-10 mmHg (transvalvular pressure gradient during diastole and systole) were compared. RESULTS: An increase in radius by 7.3 ± 2.6, 8.7 ± 0.0 and 3.9 ± 0.0% for the porcine aortic root, CES and Intact valves, respectively, was observed during transition from diastolic to systolic pressure and less for contemporary bioprostheses-mean 2.5 ± 0.9%, lowest 1.2 ± 0.0. CONCLUSIONS: The results indicate that the radial deformability of bioprosthetic valve stent posts can be as low as 1.2% for xenoaortic and 3.0% for xenopericardial prostheses with no compromise of valve durability. Although these results suggest that valve stent post-deformability might not be of critical importance, a concrete answer to the question of the significance of stent deformability for valve durability can be obtained only by acquiring long-term follow-up results for valve prostheses with rigid stents.


Subject(s)
Aortic Valve/physiology , Bioprosthesis , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis , Stents , Animals , Materials Testing , Pressure , Prosthesis Design , Stress, Mechanical , Swine
18.
Curr Opin Biotechnol ; 22(5): 667-73, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21419621

ABSTRACT

Organ printing, or the layer by layer additive robotic biofabrication of functional three-dimensional tissue and organ constructs using self-assembling tissue spheroid building blocks, is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. It is increasingly obvious that similar well-established industries implement automated robotic systems on the path to commercial translation and economic success. The use of robotic bioprinters alone however is not sufficient for the development of large industrial scale organ biofabrication. The design and development of a fully integrated organ biofabrication line is imperative for the commercial translation of organ printing technology. This paper presents recent progress and challenges in the development of the essential components of an organ biofabrication line.


Subject(s)
Tissue Engineering , Bioartificial Organs , Bioreactors , Humans , Robotics , Tissue Engineering/instrumentation
19.
Expert Opin Biol Ther ; 10(3): 409-20, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20132061

ABSTRACT

IMPORTANCE OF THE FIELD: Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. AREAS COVERED IN THIS REVIEW: We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. WHAT THE READER WILL GAIN: The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. TAKE HOME MESSAGE: It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.


Subject(s)
Blood Vessels , Tissue Engineering , Animals , Feasibility Studies , Humans , Robotics
SELECTION OF CITATIONS
SEARCH DETAIL
...