Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31751767

ABSTRACT

Millipedes represent a model for the study of organic matter transformation, animal-microbial interactions, and compartmentalisation of digestion. The activity of saccharidases (amylase, laminarinase, cellulase, xylanase, chitinase, maltase, cellobiase, and trehalase) and protease were measured in the midgut and hindgut contents and walls of the millipedes Archispirostreptus gigas and Epibolus pulchripes. Assays done at pH 4 and 7 confirmed activities of all enzymes except xylanase. Hydrolysing of starch and laminarin prevailed. The hindgut of E. pulchripes was shorter, less differentiated. Micro-apocrine secretion was observed only in the midgut of A. gigas. Merocrine secretion was present in midgut and hindgut of E. pulchripes, and in the pyloric valve and anterior hindgut of A. gigas. Alpha-polysaccharidases were mostly active in the midgut content and walls, with higher activity at pH 4. The low activity of amylase (A. gigas) and laminarinase (E. pulchripes) in midgut tissue may indicate their synthesis in salivary glands. Cellulases were found in midgut. Chitinases, found in midgut content and tissue (E. pulchripes) or concentrated in the midgut wall (A. gigas), were more active at an acidic pH. Polysaccharidases were low in hindguts. Protease shows midgut origin and alkaline activity extending to the hindgut in E. pulchripes, whereas in A. gigas it is of salivary gland origin and acid activity restricted to the midgut. Some disaccharidases, with more alkaline activity, showed less apparent midgut-hindgut differences. It may indicate an axial separating of the primary and secondary digestion along the intestinal pH gradient or the presence of enzymes of hindgut parasites.


Subject(s)
Arthropods/enzymology , Chitinases/metabolism , Animals , Arthropods/classification , Cellulase/metabolism , Chitinases/physiology , Gastrointestinal Tract/enzymology , Hydrogen-Ion Concentration , Peptide Hydrolases/metabolism , Polysaccharides/metabolism , Substrate Specificity
2.
Microsc Microanal ; 25(4): 1004-1016, 2019 08.
Article in English | MEDLINE | ID: mdl-31106722

ABSTRACT

The process of autophagy has been detected in the midgut epithelium of four millipede species: Julus scandinavius, Polyxenus lagurus, Archispirostreptus gigas, and Telodeinopus aoutii. It has been examined using transmission electron microscopy (TEM), which enabled differentiation of cells in the midgut epithelium, and some histochemical methods (light microscope and fluorescence microscope). While autophagy appeared in the cytoplasm of digestive, secretory, and regenerative cells in J. scandinavius and A. gigas, in the two other species, T. aoutii and P. lagurus, it was only detected in the digestive cells. Both types of macroautophagy, the selective and nonselective processes, are described using TEM. Phagophore formation appeared as the first step of autophagy. After its blind ends fusion, the autophagosomes were formed. The autophagosomes fused with lysosomes and were transformed into autolysosomes. As the final step of autophagy, the residual bodies were detected. Autophagic structures can be removed from the midgut epithelium via, e.g., atypical exocytosis. Additionally, in P. lagurus and J. scandinavius, it was observed as the neutralization of pathogens such as Rickettsia-like microorganisms. Autophagy and apoptosis ca be analyzed using TEM, while specific histochemical methods may confirm it.


Subject(s)
Apoptosis , Arthropods , Autophagy , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Animals , Lysosomes/ultrastructure , Microscopy , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Phagosomes/ultrastructure , Rickettsia/immunology
3.
Diagn Cytopathol ; 46(10): 815-825, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30195266

ABSTRACT

The Papanicolaou Society of Cytopathology has developed a set of guidelines for pulmonary cytology including indications for bronchial brushings, washings, and endobronchial ultrasound guided transbronchial fine-needle aspiration (EBUS-TBNA), technical recommendations for cytological sampling, recommended terminology and classification schemes, recommendations for ancillary testing and recommendations for post-cytological management and follow-up. All recommendations are based on the expertise of the authors, an extensive literature review and feedback from presentations at national and international conferences. This document selectively presents the results of these discussions. The present document summarizes recommendations regarding techniques used to obtain cytological and small histologic specimens from the lung and mediastinal lymph nodes including rapid on-site evaluation (ROSE), and the triage of specimens for immunocytochemical and molecular studies.


Subject(s)
Cytodiagnosis , Lung/pathology , Lymph Nodes/pathology , Mediastinum/pathology , Practice Guidelines as Topic , Endoscopic Ultrasound-Guided Fine Needle Aspiration , Humans , Lung/diagnostic imaging , Lymph Nodes/diagnostic imaging , Mediastinum/diagnostic imaging , Tomography, X-Ray Computed
4.
Neotrop Entomol ; 46(1): 45-57, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27553718

ABSTRACT

Cimicidae are temporary ectoparasites, which means that they cannot obtain food continuously. Both Cimex species examined here, Cimex lectularius (Linnaeus 1758) and Cimex pipistrelli (Jenyns 1839), can feed on a non-natal host, C. lectularius from humans on bats, C. pipistrelli on humans, but never naturally. The midgut of C. lectularius and C. pipistrelli is composed of three distinct regions-the anterior midgut (AMG), which has a sack-like shape, the long tube-shaped middle midgut (MMG), and the posterior midgut (PMG). The different ultrastructures of the AMG, MMG, and PMG in both of the species examined suggest that these regions must fulfill different functions in the digestive system. Ultrastructural analysis showed that the AMG fulfills the role of storing food and synthesizing and secreting enzymes, while the MMG is the main organ for the synthesis of enzymes, secretion, and the storage of the reserve material. Additionally, both regions, the AMG and MMG, are involved in water absorption in the digestive system of both Cimex species. The PMG is the part of the midgut in which spherites accumulate. The results of our studies confirm the suggestion of former authors that the structure of the digestive tract of insects is not attributed solely to diet but to the basic adaptation of an ancestor.


Subject(s)
Bedbugs/anatomy & histology , Digestive System/anatomy & histology , Feeding Behavior , Animals , Chiroptera , Diet , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...