Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1861(6): 1103-1111, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30926363

ABSTRACT

Hydrolyzable tannin (3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-ß-d-glucose) has a dual effect on the cell membrane: (1) it binds to a plasmalemmal protein of the Chara corallina cell (C50 = 2.7 ±â€¯0.3 µM) and (2) it forms ionic channels in the lipid membrane. Based on these facts, a molecular model for the interaction of tannins with the cell membrane is proposed. The model suggests that the molecules of hydrolyzable tannin bind electrostatically to the outer groups of the membrane protein responsible for the Ca2+-dependent chloride current and blocks it. Some tannin molecules penetrate into the hydrophobic region of the membrane, and when a particular concentration is reached, they form ion-conducting structures selective toward Cl-.


Subject(s)
Cell Membrane/chemistry , Hydrolyzable Tannins/chemistry , Lipid Bilayers/chemistry , Chara/chemistry , Chara/cytology , Membrane Proteins/chemistry
2.
Biochim Biophys Acta ; 1818(5): 1235-41, 2012 May.
Article in English | MEDLINE | ID: mdl-22281415

ABSTRACT

We studied the influence of Bacillus cereus bacteria on cells of the freshwater alga Chara corallina. These bacteria and recombinant Bacillus subtilis strains are capable of producing the secreted toxin HlyII, which changes the electrophysiological parameters of the algal electrically excitable plasma membrane by forming pores. Cooperative incubation of bacterial cells, which carry active hlyII gene, and Chara corallina cells caused a decrease in the resting potential (V(m)) and plasma membrane resistance (R(m)) of algal cells. The efficiency of each strain was commensurable with its ability to produce HlyII. Purified hemolysin II caused a similar effect on V(m) and R(m) of intact and perfused cells. This protein changed the kinetics and magnitude of transient voltage-dependent calcium and calcium-activated chloride currents owing to the formation of additional Ca(2+)-permeable pores in algal cell membrane. Occurrence of the cellulose cell wall with pores 2.1 to 4.6nm in diameter suggests that HlyII molecules reach the plasma membrane surface strictly as monomers.


Subject(s)
Bacillus cereus/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Chara/metabolism , Hemolysin Proteins/metabolism , Membrane Potentials , Bacillus cereus/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Calcium/metabolism , Cell Membrane/genetics , Hemolysin Proteins/genetics
3.
J Bioenerg Biomembr ; 41(3): 229-37, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19588235

ABSTRACT

The specific complexes of human alpha-lactalbumin (alpha-LA) with oleic acid (OA), HAMLET and LA-OA-17 (OA-complexes), possess cytotoxic activity against tumor cells but the mechanism of their cell penetration remains unclear. To explore the molecular mechanisms underlying interaction of the OA-complexes with the cell membrane, their interactions with small unilamellar dipalmitoylphosphatidylcholine (DPPC) vesicles and electroexcitable plasma membrane of internodal native and perfused cells of the green alga Chara corallina have been studied. The fractionation (Sephadex G-200) of mixtures of the OA-complexes with the vesicles shows that OA-binding increases the affinity of alpha-LA to DPPC vesicles. Calcium association decreases protein affinity to the vesicles; the effect being less pronounced for LA-OA-17. The voltage clamp technique studies show that LA-OA-17, HAMLET, and their constituents produce different modifying effects on the plasmalemmal ionic channels of the Chara corallina cells. The irreversible binding of OA-complexes to the plasmalemma is accompanied by changes in the activation-inactivation kinetics of developing integral transmembrane currents, suppression of the Ca(2+) current and Ca(2+)-activated Cl(-) current, and by increase in the nonspecific K(+) leakage currents. The latter reflects development of nonselective permeability of the plasma membrane. The HAMLET-induced effects on the plasmalemmal currents are less pronounced and potentiated by LA-OA-17. The control experiments with OA and intact alpha-LA show their qualitatively different and much less pronounced effects on the transmembrane ionic currents. Thus, the modification of alpha-LA by OA results in an increase in the protein association with the model lipid bilayer and in drastic irreversible changes in permeability of several types of the plasmalemmal ionic channels.


Subject(s)
Cell Membrane Permeability/physiology , Cell Membrane/metabolism , Chara/cytology , Lactalbumin/metabolism , Membranes, Artificial , Oleic Acids/metabolism , 1,2-Dipalmitoylphosphatidylcholine , Calcium/metabolism , Cell Fractionation , Humans , Ion Transport , Kinetics , Patch-Clamp Techniques , Transport Vesicles/metabolism
4.
Eur Biophys J ; 34(8): 973-86, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15971063

ABSTRACT

The voltage-clamp technique was used to study Ca(2+) and Cl(-) transient currents in the plasmalemma of tonoplast-free and intact Chara corallina cells. In tonoplast-free cells [perfused medium with ethylene glycol bis(2-aminoethyl ether)tetraacetic acid] long-term inward and outward currents through Ca channels consisted of two components: with and without time-dependent inactivation. The voltage dependence of the Ca channel activation ratio was found to be sigmoid-shaped, with about -140-mV activation threshold, reaching a plateau at V>50 mV. As the voltage increased, the characteristic activation time decreased from approximately 10(3) ms in the threshold region to approximately 10 ms in the positive region. The positive pulse-activated channels can then be completely deactivated, which is recorded by the Ca(2+) tail currents, at below-threshold negative voltages with millisecond-range time constants. This tail current is used for fast and brief Ca(2+) injection into tonoplast-free and intact cells, to activate the chloride channels by Ca(2+) . When cells are perfused with EDTA-containing medium in the presence of excess Mg(2+), this method of injection allows the free submembrane Ca(2+) concentration, [Ca(2+)](c), to be raised rapidly to several tens of micromoles per liter. Then a chloride component is recorded in the inward tail current, with the amplitude proportional to [see text]. When Ca(2+) is thus injected into an intact cell, it induces an inward current in the voltage-clamped plasmalemma, having activation-inactivation kinetics qualitatively resembling that in EDTA-perfused cells, but a considerably higher amplitude and duration (approximately 10 A m(-2) and tau(inact)~0.5 s at -200 mV). Analysis of our data and theoretical considerations indicate that the [Ca(2+)](c) rise during cell excitation is caused mainly by Ca(2+) entry through plasmalemma Ca channels rather than by Ca(2+) release from intracellular stores.


Subject(s)
Calcium Channels/physiology , Calcium Signaling/physiology , Chara/physiology , Chloride Channels/physiology , Ion Channel Gating/physiology , Membrane Potentials/physiology , Models, Biological , Calcium/metabolism , Calcium Channels/drug effects , Calcium Signaling/drug effects , Cells, Cultured , Chara/drug effects , Chloride Channels/drug effects , Chlorine/metabolism , Computer Simulation , Edetic Acid/pharmacology , Ion Channel Gating/drug effects , Membrane Potentials/drug effects , Patch-Clamp Techniques , Perfusion
SELECTION OF CITATIONS
SEARCH DETAIL
...