Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 204(4): 226, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35352202

ABSTRACT

Corynebacterium amycolatum ICIS 99 was isolated from vaginal smears of healthy women and showed promising results in antimicrobial screenings. Here, we report the draft genome sequence of this strain and analyze its main features to assess its safety and useful properties. The genome is 2,532,503 bp long and contains 2186 CDSs with an average G + C content of 59.0%. Analyses of the ICIS 99 genome revealed the absence of true virulence factors. The genome contains genes involved in the synthesis of secondary metabolites and bacteriocins of the class sactipeptide. In the genome of ICIS 99, we identified a large number of genes responsible for adaptation and survival in the vaginal environment, including acid and oxidative stress resistance genes. The genomic information of ICIS 99 provides a basis for understanding the safety and useful properties of ICIS 99 and for considering it as a potential probiotic strain. The whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession number JAIUSU000000000.


Subject(s)
Bacteriocins , Corynebacterium , Bacteriocins/genetics , Base Composition , Corynebacterium/genetics , Female , Humans , Vagina
2.
Data Brief ; 33: 106407, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33102664

ABSTRACT

It is known that the rumen microbiome directly or indirectly contributes to animal production, and may be a prospective target for mitigation of greenhouse gas emissions [1]. At the same time, feed types and components of diet can influence the composition of the rumen microbiome [2,3]. Fluctuations in the composition of the digestive tract microbiota can alter the development, health, and productivity of cattle [4]. Many studies of cattle microbiomes have focussed on the rumen microbiota, whereas the faecal microbiota has received less attention [5], [6], [7]. Therefore, the features of the faecal and the ruminal microbiomes in different cattle breeds are yet to be studied. Here, we provided 16S rRNA gene amplicon data of the ruminal and the faecal microbiomes from Yakutian and Kalmyk cattle living in the Republic of Sakha, Yakutia, Russia. Total DNA was extracted from 13 faecal and 13 ruminal samples, and DNA libraries were prepared and sequenced on an Illumina MiSeq platform. Paired-end raw reads were processed, and final operational taxonomic units (OTUs) were assigned to the respective prokaryotic taxa using the RDP (Ribosomal Database Project) database. Analysis of the microbiome composition at the phylum level revealed very similar faecal microbiota between the introduced Kalmyk breed and the indigenous Yakutian breed, whereas the ruminal microbiomes of these breeds differed substantially in terms of relative abundance of some prokaryotic phyla. We believe that the data obtained may provide new insights into the dynamics of the ruminal and the faecal microbiota of cattle as well as disclose breed-specific features of ruminal microbiomes. Besides, these data will contribute to our understanding of the ruminal microbiome structure and function, and might be useful for the management of cattle feeding and ruminal methane production.

3.
Data Brief ; 32: 106278, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32984471

ABSTRACT

Stenotrophomonas sp. SAM-B was isolated from Uzharlyg Mineral Cold Spring, Samagaltay Settlement, Republic of Tyva (Southern Siberia), Russian Federation. A whole genome sequencing of Stenotrophomonas sp. SAM-B was performed using an Illumina MiSeq platform. The resulting draft genome contains 4,253,956 bp with 66.48% GC-content and 71 contigs; the longest contig contains 968,648 bp, and the N50 has a length of 401,736 bp. The genome includes 3816 protein-coding genes, among which 23 are responsible for protein degradation, 65 are associated with stress response, and 31 are associated with virulence, disease, and defense, including beta-lactamase and resistance to fluoroquinolones. The genome data on the SAM-B strain provides fundamental knowledge that would allow a better understanding of the microorganisms inhabiting cold water environments. Moreover, the results of the genome annotation indicated that diverse metabolic pathways are encoded in the genome of the SAM-B strain and that it has biotechnological potential. The draft genome sequence of Stenotrophomonas sp. SAM-B has been deposited in DDBJ/ENA/GenBank under the accession number JABBXB000000000; the accession number of the genome sequence referred to in this paper is JABBXB010000000.

4.
Data Brief ; 31: 106008, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32695865

ABSTRACT

Salmonella enterica is an ubiquitous pathogen throughout the world causing gastroenteritis in humans and animals. Survival of pathogenic bacteria in the external environment may be associated with the ability to overcome the stress caused by starvation. The bacterial response to starvation is well understood in laboratory cultures with a sufficiently high cell density. However, bacterial populations often have a small size when facing this challenge in natural biotopes. The aim of this work was to find out if there are differences in the transcriptomes of S. enterica depending on the factor of cell density during starvation. Here we present transcriptome data of Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S grown in carbon rich or carbon deficient medium with high or low cell density. These data will help identify genes involved in adaptation of low-density bacterial populations to starvation conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...