Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 126(16): 3029-3036, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35416670

ABSTRACT

Protein molecules are thermally fluctuating and tightly packed amino acid residues strongly interact with each other. Such interactions are characterized in terms of heat current at the atomic level. We calculated the thermal conductivity of a small globular protein, villin headpiece subdomain, based on the linear response theory using equilibrium molecular dynamics simulation. The value of its thermal conductivity was 0.3 ± 0.01 [W m-1 K-1], which is in good agreement with experimental and computational studies on the other proteins in the literature. Heat current along the main chain was dominated by local vibrations in the polypeptide bonds, with amide I, II, III, and A bands on the Fourier transform of the heat current autocorrelation function.


Subject(s)
Molecular Dynamics Simulation , Peptides , Thermal Conductivity
2.
Nutrients ; 14(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35276939

ABSTRACT

Ecklonia stolonifera Okamura extract (ESE) has been reported to have various bioactive effects, but its effects on cardiovascular disease have not yet been investigated. First, primary neonatal rat cultured cardiomyocytes were treated with ESE and stimulated with phenylephrine (PE) for 48 h. ESE (1000 µg/mL) significantly suppressed PE-induced cardiomyocyte hypertrophy, hypertrophy-related gene transcription, and the acetylation of histone H3K9. An in vitro p300-HAT assay indicated that ESE directly inhibited p300-HAT activity. Next, one week after myocardial infarction (MI) surgery, rats (left ventricular fractional shortening (LVFS) < 40%) were randomly assigned to three groups: vehicle (saline, n = 9), ESE (0.3 g/kg, n = 10), or ESE (1 g/kg, n = 10). Daily oral administration was carried out for 8 weeks. After treatment, LVFS was significantly higher in the ESE (1 g/kg) group than in the vehicle group. The ESE treatments also significantly suppressed MI-induced increases in myocardial cell diameter, perivascular fibrosis, hypertrophy- and fibrosis-related gene transcription, and the acetylation of histone H3K9. These results suggest that ESE suppressed both hypertrophic responses in cardiomyocytes and the development of heart failure in rats by inhibiting p300-HAT activity. Thus, this dietary extract is a potential novel therapeutic strategy for heart failure in humans.


Subject(s)
Heart Failure , Myocardial Infarction , Phaeophyceae , Animals , Myocardial Infarction/complications , Myocardial Infarction/drug therapy , Myocytes, Cardiac , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats
3.
Cancers (Basel) ; 14(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35158951

ABSTRACT

It is well known that the anthracycline anticancer drug doxorubicin (DOX) induces cardiotoxicity. Recently, Chrysanthemum morifolium extract (CME), an extract of the purple chrysanthemum flower, has been reported to possess various physiological activities such as antioxidant and anti-inflammatory effects. However, its effect on DOX-induced cardiotoxicity is still unknown. An 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT)assay revealed that 1 mg/mL of CME reduced DOX-induced cytotoxicity in H9C2 cells but not in MDA-MB-231 cells. A TUNEL assay indicated that CME treatment improved DOX-induced apoptosis in H9C2 cells. Moreover, DOX-induced increases in the expression levels of p53, phosphorylated p53, and cleaved caspase-3,9 were significantly suppressed by CME treatment. Next, we investigated the effect of CME in vivo. The results showed that CME treatment substantially reversed the DOX-induced decrease in survival rate. Echocardiography indicated that CME treatment also reduced DOX-induced left ventricular systolic dysfunction, and a TUNEL assay showed that CME treatment also suppressed apoptosis in the mouse heart. These results reveal that CME treatment ameliorated DOX-induced cardiotoxicity by suppressing apoptosis. Further study is needed to clarify the effect of CME on DOX-induced heart failure in humans.

4.
Bioorg Med Chem Lett ; 59: 128554, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35051575

ABSTRACT

Motilin is a 22-amino-acid gastrointestinal (GI) hormone and is involved in the regulation of GI motility through binding to GPR38, the motilin receptor which is expressed on smooth muscle cells in the GI tract. Therefore, GPR38 agonists are expected to be novel gastrointestinal prokinetic agents for the treatment of functional gastrointestinal disorders such as gastroparesis and chronic constipation. We identified a series of N-methylanilide derivatives as novel non-macrolide GPR38 agonists. Among them, 12 di-l-tartrate (DS-3801b) was selected as a clinical candidate for further evaluation.


Subject(s)
Aniline Compounds/pharmacology , Cyclohexanes/pharmacology , Drug Discovery , Gastrointestinal Agents/pharmacology , Gastroparesis/drug therapy , Piperazines/pharmacology , Receptors, G-Protein-Coupled/agonists , Aniline Compounds/chemistry , Animals , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Dose-Response Relationship, Drug , Gastrointestinal Agents/chemical synthesis , Gastrointestinal Agents/chemistry , Gastroparesis/metabolism , Humans , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Rabbits , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
5.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34959669

ABSTRACT

Drug repositioning has recently emerged as a strategy for developing new treatments at low cost. In this study, we used a library of approved drugs to screen for compounds that suppress cardiomyocyte hypertrophy. We identified the antiplatelet drug sarpogrelate, a selective serotonin-2A (5-HT2A) receptor antagonist, and investigated the drug's anti-hypertrophic effect in cultured cardiomyocytes and its effect on heart failure in vivo. Primary cultured cardiomyocytes pretreated with sarpogrelate were stimulated with angiotensin II, endothelin-1, or phenylephrine. Immunofluorescence staining showed that sarpogrelate suppressed the cardiomyocyte hypertrophy induced by each of the stimuli. Western blotting analysis revealed that 5-HT2A receptor level was not changed by phenylephrine, and that sarpogrelate suppressed phenylephrine-induced phosphorylation of ERK1/2 and GATA4. C57BL/6J male mice were subjected to transverse aortic constriction (TAC) surgery followed by daily oral administration of sarpogrelate for 8 weeks. Echocardiography showed that 5 mg/kg of sarpogrelate suppressed TAC-induced cardiac hypertrophy and systolic dysfunction. Western blotting revealed that sarpogrelate suppressed TAC-induced phosphorylation of ERK1/2 and GATA4. These results indicate that sarpogrelate suppresses the development of heart failure and that it does so at least in part by inhibiting the ERK1/2-GATA4 signaling pathway.

6.
ACS Med Chem Lett ; 12(1): 121-128, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33488973

ABSTRACT

Therapeutic reactivation of the γ-globin genes for fetal hemoglobin (HbF) production is an attractive strategy for treating ß-thalassemia and sickle cell disease. It was reported that genetic knockdown of the histone lysine methyltransferase EHMT2/1 (G9a/GLP) is sufficient to induce HbF production. The aim of the present work was to acquire a G9a/GLP inhibitor that induces HbF production sufficiently. It was revealed that tetrahydroazepine has versatility as a side chain in various skeletons. We ultimately obtained a promising aminoindole derivative (DS79932728), a potent and orally bioavailable G9a/GLP inhibitor that was found to induce γ-globin production in a phlebotomized cynomolgus monkey model. This work could facilitate the development of effective new approaches for treating ß-thalassemia and sickle cell disease.

8.
Bioorg Med Chem Lett ; 30(20): 127475, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32781218

ABSTRACT

The discovery and optimization of a novel series of G9a/GLP (EHMT2/1) inhibitors are described. Starting from known G9a/GLP inhibitor 5, efforts to explore the structure-activity relationship and optimize drug properties led to a novel compound 13, the side chain of which was converted to tetrahydroazepine. Compound 13 showed increased G9a/GLP inhibitory activity compared with compound 5. In addition, compound 13 exhibited improved human ether-a-go-go related gene (hERG) inhibitory activity over compound 5 and also improved pharmacokinetic profile in mice (oral bioavailability: 17 to 40%). Finally, the co-crystal structure of G9a in complex with compound 13 provides the basis for the further development of tetrahydroazepine-based G9a/GLP inhibitors.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 28(20): 3333-3337, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30217414

ABSTRACT

Hepcidin has emerged as the central regulatory molecule in systemic iron homeostasis. The inhibition of hepcidin may be a favorable strategy for the treatment of anemia of chronic disease. Here, we have reported the design, synthesis, and structure-activity relationships (SAR) of a series of 4-aminopyrimidine compounds as inhibitors of hepcidin production. The optimization study of 1 led to the design of a potent and bioavailable inhibitor of hepcidin production, 34 (DS42450411), which showed serum hepcidin-lowering effects in a mouse model of interleukin-6-induced acute inflammation.


Subject(s)
Aminopyridines/pharmacology , Anemia/drug therapy , Hepcidins/antagonists & inhibitors , Quinazolines/pharmacology , Administration, Oral , Aminopyridines/administration & dosage , Aminopyridines/chemical synthesis , Aminopyridines/pharmacokinetics , Anemia/etiology , Animals , Binding Sites , Cell Line, Tumor , Drug Design , Hepcidins/blood , Hepcidins/chemistry , Humans , Inflammation/chemically induced , Inflammation/complications , Interleukin-6/metabolism , Iron/metabolism , Male , Mice, Inbred C57BL , Molecular Structure , Quinazolines/administration & dosage , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Structure-Activity Relationship
10.
Comp Biochem Physiol B Biochem Mol Biol ; 147(4): 716-24, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17543562

ABSTRACT

Plutella xylostella strain resistant (PXR) to Bacillus thuringiensis Cry1Ac toxin was not killed at even more than 1000 microg Cry1Ac/g diet but killed by Cry1Ab at 0.5 microg/g diet. In contrast, susceptible strain (PXS) was killed by Cry1Ac at 1 microg/g diet. Cy3-labeld Cry1A(s) binding to brush border membrane vesicles (BBMV) prepared from both strains were analyzed with direct binding assay. The Kd value of Cry1Aa to both BBMV was almost identical: 213.2 and 205.8 nM, and 263.5 and 265.0 nM for Cry1Ac. The highest Kd values were in Cry1Ab which showed most effective insecticidal activity in PXS and PXR, 2126 and 2463 nM, respectively. These results clearly showed that the BBMV from PXR and PXS could equally bind to Cry1Ac. The binding between BBMV and Cy3-labeled Cry1Ac was inhibited only by anti-175 kDa cadherin-like protein (CadLP) and -252 kDa protein antisera, but not by anti-120 kDa aminopeptidase. This supports that resistance in PXR resulted from the abortion of pore formation after the binding of Cry1Ac to the BBMV. And furthermore, the importance of 175K CadLP and P252 proteins in those bindings was suggested. We briefly discuss possible mechanisms of the resistance.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Bacterial Toxins/metabolism , Bacterial Toxins/pharmacology , Digestive System/metabolism , Endotoxins/metabolism , Endotoxins/pharmacology , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Moths , Animals , Bacillus thuringiensis/chemistry , Bacillus thuringiensis Toxins , Bacterial Proteins/immunology , Blotting, Western , Cell Membrane/metabolism , Digestive System/ultrastructure , Dose-Response Relationship, Drug , Insecticide Resistance , Microvilli/metabolism , Moths/anatomy & histology , Moths/drug effects , Protein Binding , Transport Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...