Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Proc Natl Acad Sci U S A ; 119(38): e2123117119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36099298

ABSTRACT

Acinetobacter baumannii is a clinically important, predominantly health care-associated gram-negative bacterium with high rates of emerging resistance worldwide. Given the urgent need for novel antibacterial therapies against A. baumannii, we focused on inhibiting lipoprotein biosynthesis, a pathway that is essential for envelope biogenesis in gram-negative bacteria. The natural product globomycin, which inhibits the essential type II signal peptidase prolipoprotein signal peptidase (LspA), is ineffective against wild-type A. baumannii clinical isolates due to its poor penetration through the outer membrane. Here, we describe a globomycin analog, G5132, that is more potent against wild-type and clinical A. baumannii isolates. Mutations leading to G5132 resistance in A. baumannii map to the signal peptide of a single hypothetical gene, which we confirm encodes an alanine-rich lipoprotein and have renamed lirL (prolipoprotein signal peptidase inhibitor resistance lipoprotein). LirL is a highly abundant lipoprotein primarily localized to the inner membrane. Deletion of lirL leads to G5132 resistance, inefficient cell division, increased sensitivity to serum, and attenuated virulence. Signal peptide mutations that confer resistance to G5132 lead to the accumulation of diacylglyceryl-modified LirL prolipoprotein in untreated cells without significant loss in cell viability, suggesting that these mutations overcome a block in lipoprotein biosynthetic flux by decreasing LirL prolipoprotein substrate sensitivity to processing by LspA. This study characterizes a lipoprotein that plays a critical role in resistance to LspA inhibitors and validates lipoprotein biosynthesis as a antibacterial target in A. baumannii.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Aspartic Acid Endopeptidases , Bacterial Proteins , Drug Resistance, Bacterial , Furans , Gene Deletion , Lipoproteins , Protease Inhibitors , Pyridines , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Aspartic Acid Endopeptidases/genetics , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Furans/pharmacology , Lipoproteins/biosynthesis , Lipoproteins/genetics , Peptides/pharmacology , Protease Inhibitors/pharmacology , Protein Sorting Signals/genetics , Pyridines/pharmacology
2.
Elife ; 112022 08 19.
Article in English | MEDLINE | ID: mdl-35983994

ABSTRACT

Lung development, integrity and repair rely on precise Wnt signaling, which is corrupted in diverse diseases, including cancer. Here, we discover that EHMT2 methyltransferase regulates Wnt signaling in the lung by controlling the transcriptional activity of chromatin-bound ß-catenin, through a non-histone substrate in mouse lung. Inhibition of EHMT2 induces transcriptional, morphologic, and molecular changes consistent with alveolar type 2 (AT2) lineage commitment. Mechanistically, EHMT2 activity functions to support regenerative properties of KrasG12D tumors and normal AT2 cells-the predominant cell of origin of this cancer. Consequently, EHMT2 inhibition prevents KrasG12D lung adenocarcinoma (LUAD) tumor formation and propagation and disrupts normal AT2 cell differentiation. Consistent with these findings, low gene EHMT2 expression in human LUAD correlates with enhanced AT2 gene expression and improved prognosis. These data reveal EHMT2 as a critical regulator of Wnt signaling, implicating Ehmt2 as a potential target in lung cancer and other AT2-mediated lung pathologies.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Animals , Genes, ras , Histocompatibility Antigens/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Methyltransferases/metabolism , Mice , Proto-Oncogene Proteins p21(ras)/metabolism
3.
J Med Chem ; 65(5): 4085-4120, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35184554

ABSTRACT

The dramatic increase in the prevalence of multi-drug resistant Gram-negative bacterial infections and the simultaneous lack of new classes of antibiotics is projected to result in approximately 10 million deaths per year by 2050. We report on efforts to target the Gram-negative ATP-binding cassette (ABC) transporter MsbA, an essential inner membrane protein that transports lipopolysaccharide from the inner leaflet to the periplasmic face of the inner membrane. We demonstrate the improvement of a high throughput screening hit into compounds with on-target single digit micromolar (µM) minimum inhibitory concentrations against wild-type uropathogenic Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. A 2.98 Å resolution X-ray crystal structure of MsbA complexed with an inhibitor revealed a novel mechanism for inhibition of an ABC transporter. The identification of a fully encapsulated membrane binding site in Gram-negative bacteria led to unique physicochemical property requirements for wild-type activity.


Subject(s)
Escherichia coli , Lipopolysaccharides , ATP-Binding Cassette Transporters , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Klebsiella pneumoniae/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology
4.
Elife ; 102021 06 04.
Article in English | MEDLINE | ID: mdl-34085925

ABSTRACT

Defective autophagy is strongly associated with chronic inflammation. Loss-of-function of the core autophagy gene Atg16l1 increases risk for Crohn's disease in part by enhancing innate immunity through myeloid cells such as macrophages. However, autophagy is also recognized as a mechanism for clearance of certain intracellular pathogens. These divergent observations prompted a re-evaluation of ATG16L1 in innate antimicrobial immunity. In this study, we found that loss of Atg16l1 in myeloid cells enhanced the killing of virulent Shigella flexneri (S.flexneri), a clinically relevant enteric bacterium that resides within the cytosol by escaping from membrane-bound compartments. Quantitative multiplexed proteomics of murine bone marrow-derived macrophages revealed that ATG16L1 deficiency significantly upregulated proteins involved in the glutathione-mediated antioxidant response to compensate for elevated oxidative stress, which simultaneously promoted S.flexneri killing. Consistent with this, myeloid-specific deletion of Atg16l1 in mice accelerated bacterial clearance in vitro and in vivo. Pharmacological induction of oxidative stress through suppression of cysteine import enhanced microbial clearance by macrophages. Conversely, antioxidant treatment of macrophages permitted S.flexneri proliferation. These findings demonstrate that control of oxidative stress by ATG16L1 and autophagy regulates antimicrobial immunity against intracellular pathogens.


Subject(s)
Autophagy-Related Proteins/deficiency , Autophagy , Dysentery, Bacillary/microbiology , Immunity, Innate , Macrophages/microbiology , Oxidative Stress , Proteome , Proteomics , Shigella flexneri/pathogenicity , Animals , Autophagy-Related Proteins/genetics , Cells, Cultured , Disease Models, Animal , Dysentery, Bacillary/immunology , Dysentery, Bacillary/metabolism , Host-Pathogen Interactions , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microbial Viability , Shigella flexneri/immunology , Shigella flexneri/metabolism , Virulence
5.
J Bacteriol ; 203(13): e0014921, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33875545

ABSTRACT

Lipoprotein diacylglyceryl transferase (Lgt) catalyzes the first step in the biogenesis of Gram-negative bacterial lipoproteins which play crucial roles in bacterial growth and pathogenesis. We demonstrate that Lgt depletion in a clinical uropathogenic Escherichia coli strain leads to permeabilization of the outer membrane and increased sensitivity to serum killing and antibiotics. Importantly, we identify G2824 as the first-described Lgt inhibitor that potently inhibits Lgt biochemical activity in vitro and is bactericidal against wild-type Acinetobacter baumannii and E. coli strains. While deletion of a gene encoding a major outer membrane lipoprotein, lpp, leads to rescue of bacterial growth after genetic depletion or pharmacologic inhibition of the downstream type II signal peptidase, LspA, no such rescue of growth is detected after Lgt depletion or treatment with G2824. Inhibition of Lgt does not lead to significant accumulation of peptidoglycan-linked Lpp in the inner membrane. Our data validate Lgt as a novel antibacterial target and suggest that, unlike downstream steps in lipoprotein biosynthesis and transport, inhibition of Lgt may not be sensitive to one of the most common resistance mechanisms that invalidate inhibitors of bacterial lipoprotein biosynthesis and transport. IMPORTANCE As the emerging threat of multidrug-resistant (MDR) bacteria continues to increase, no new classes of antibiotics have been discovered in the last 50 years. While previous attempts to inhibit the lipoprotein biosynthetic (LspA) or transport (LolCDE) pathways have been made, most efforts have been hindered by the emergence of a common mechanism leading to resistance, namely, the deletion of the gene encoding a major Gram-negative outer membrane lipoprotein lpp. Our unexpected finding that inhibition of Lgt is not susceptible to lpp deletion-mediated resistance uncovers the complexity of bacterial lipoprotein biogenesis and the corresponding enzymes involved in this essential outer membrane biogenesis pathway and potentially points to new antibacterial targets in this pathway.


Subject(s)
Escherichia coli/metabolism , Lipoproteins/metabolism , Transferases/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Aspartic Acid Endopeptidases , Bacterial Proteins , Escherichia coli/genetics , Female , Gene Deletion , Gene Expression Regulation, Bacterial/drug effects , Mice , Peptidoglycan/metabolism , Transferases/chemistry , Transferases/genetics , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism
6.
Commun Biol ; 3(1): 687, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33214666

ABSTRACT

Vascular leakage, or edema, is a serious complication of acute allergic reactions. Vascular leakage is triggered by the release of histamine and serotonin from granules within tissue-resident mast cells. Here, we show that expression of Neutrophil Serine Protease 4 (NSP4) during the early stages of mast cell development regulates mast cell-mediated vascular leakage. In myeloid precursors, the granulocyte-macrophage progenitors (GMPs), loss of NSP4 results in the decrease of cellular levels of histamine, serotonin and heparin/heparan sulfate. Mast cells that are derived from NSP4-deficient GMPs have abnormal secretory granule morphology and a sustained reduction in histamine and serotonin levels. Consequently, in passive cutaneous anaphylaxis and acute arthritis models, mast cell-mediated vascular leakage in the skin and joints is substantially reduced in NSP4-deficient mice. Our findings reveal that NSP4 is required for the proper storage of vasoactive amines in mast cell granules, which impacts mast cell-dependent vascular leakage in mouse models of immune complex-mediated diseases.


Subject(s)
Mast Cells/enzymology , Serine Proteases/metabolism , Adoptive Transfer , Animals , Antigen-Antibody Complex , Gene Expression Regulation, Enzymologic , Histamine/metabolism , Mice , Mice, Knockout , Neutrophils , Serine Proteases/genetics , Serotonin/metabolism
7.
mBio ; 11(5)2020 09 08.
Article in English | MEDLINE | ID: mdl-32900806

ABSTRACT

Clinical development of antibiotics with novel mechanisms of action to kill pathogenic bacteria is challenging, in part, due to the inevitable emergence of resistance. A phenomenon of potential clinical importance that is broadly overlooked in preclinical development is heteroresistance, an often-unstable phenotype in which subpopulations of bacterial cells show decreased antibiotic susceptibility relative to the dominant population. Here, we describe a new globomycin analog, G0790, with potent activity against the Escherichia coli type II signal peptidase LspA and uncover two novel resistance mechanisms to G0790 in the clinical uropathogenic E. coli strain CFT073. Building on the previous finding that complete deletion of Lpp, the major Gram-negative outer membrane lipoprotein, leads to globomycin resistance, we also find that an unexpectedly modest decrease in Lpp levels mediated by insertion-based disruption of regulatory elements is sufficient to confer G0790 resistance and increase sensitivity to serum killing. In addition, we describe a heteroresistance phenotype mediated by genomic amplifications of lspA that result in increased LspA levels sufficient to overcome inhibition by G0790 in culture. These genomic amplifications are highly unstable and are lost after as few as two subcultures in the absence of G0790, which places amplification-containing resistant strains at high risk of being misclassified as susceptible by routine antimicrobial susceptibility testing. In summary, our study uncovers two vastly different mechanisms of resistance to LspA inhibitors in E. coli and emphasizes the importance of considering the potential impact of unstable and heterogenous phenotypes when developing antibiotics for clinical use.IMPORTANCE Despite increasing evidence suggesting that antibiotic heteroresistance can lead to treatment failure, the significance of this phenomena in the clinic is not well understood, because many clinical antibiotic susceptibility testing approaches lack the resolution needed to reliably classify heteroresistant strains. Here we present G0790, a new globomycin analog and potent inhibitor of the Escherichia coli type II signal peptidase LspA. We demonstrate that in addition to previously known mechanisms of resistance to LspA inhibitors, unstable genomic amplifications containing lspA can lead to modest yet biologically significant increases in LspA protein levels that confer a heteroresistance phenotype.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Bacterial Proteins/antagonists & inhibitors , Drug Resistance, Bacterial/genetics , Lipoproteins/metabolism , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/enzymology , Animals , Aspartic Acid Endopeptidases/genetics , Bacterial Proteins/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Female , Humans , Mice , Mice, Inbred C57BL , Peptides/chemistry , Peptides/pharmacology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity
8.
Toxicol Pathol ; 48(3): 465-480, 2020 04.
Article in English | MEDLINE | ID: mdl-32124659

ABSTRACT

Cyclic adenosine monophosphate-response element (CREB)-binding protein (CBP) and EP300E1A-binding protein (p300) are members of the bromodomain and extraterminal motif (BET) family. These highly homologous proteins have a key role in modulating transcription, including altering the status of chromatin or through interactions with or posttranslational modifications of transcription factors. As CBP and p300 have known roles for stimulating c-Myc oncogenic activity, a small-molecule inhibitor, GNE-781, was developed to selectively and potently inhibit the CBP/p300 bromodomains (BRDs). Genetic models have been challenging to develop due to embryonic lethality arising from germline homozygous mutations in either CBP or P300. Hence, the purpose of this study was to characterize the role of dual inhibition of these proteins in adult rats and dogs. Repeat dose toxicity studies were conducted, and toxicologic and pathologic end points were assessed. GNE-781 was generally tolerated; however, marked effects on thrombopoiesis occurred in both species. Evidence of inhibition of erythroid, granulocytic, and lymphoid cell differentiation was also present, as well as deleterious changes in gastrointestinal and reproductive tissues. These findings are consistent with many preclinical (and clinical) effects reported with BET inhibitors targeting BRD proteins; thus, the current study findings indicate a likely important role for CBP/p300 in stem cell differentiation.


Subject(s)
Pyrazoles/pharmacology , Pyridines/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Dogs , Drug Evaluation, Preclinical/methods , Ether-A-Go-Go Potassium Channels/drug effects , Female , Humans , Male , Rats , Rats, Sprague-Dawley
9.
J Histochem Cytochem ; 68(1): 9-23, 2020 01.
Article in English | MEDLINE | ID: mdl-31385742

ABSTRACT

Ultrastructural analysis of healthy, diseased, or experimental tissues is essential in diagnostic and investigative pathology. Evaluation of large tissue areas with suborganelle resolution is challenging because biological structures ranging from several millimeters to nanometers in size need to be identified and imaged while maintaining context over multiple scales. Imaging with field emission scanning electron microscopes (FE-SEMs) is uniquely suited for this task. We describe an efficient workflow for the preparation and unobstructed multiscale imaging of tissue sections with backscattered electron scanning electron microscopy (BSE-SEM) for applications in ultrastructural pathology. We demonstrate that a diverse range of tissues, processed by conventional electron microscopy protocols and avoiding the use of mordanting agents, can be imaged on standard glass slides over multiple scales, from the histological to the ultrastructural level, without any visual obstructions. Our workflow takes advantage of the very large scan fields possible with modern FE-SEMs that allow for the acquisition of wide-field overview images which can be explored at the ultrastructural level by digitally zooming into the images. Examples from applications in pulmonary research and neuropathology demonstrate the versatility and efficiency of this method. This BSE-SEM-based multiscale imaging procedure promises to substantially simplify and accelerate ultrastructural tissue analysis in pathology.


Subject(s)
Microscopy, Electron, Scanning , Pathology/methods , Animals , Kidney Glomerulus/diagnostic imaging , Kidney Glomerulus/pathology , Kidney Glomerulus/ultrastructure , Lung/diagnostic imaging , Lung/pathology , Mice , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/pathology , Plaque, Amyloid/ultrastructure , Rats
10.
Elife ; 62017 09 21.
Article in English | MEDLINE | ID: mdl-28933694

ABSTRACT

Ubiquilins (Ubqlns) are a family of ubiquitin receptors that promote the delivery of hydrophobic and aggregated ubiquitinated proteins to the proteasome for degradation. We carried out a proteomic analysis of a B cell lymphoma-derived cell line, BJAB, that requires UBQLN1 for survival to identify UBQLN1 client proteins. When UBQLN1 expression was acutely inhibited, 120 mitochondrial proteins were enriched in the cytoplasm, suggesting that the accumulation of mitochondrial client proteins in the absence of UBQLN1 is cytostatic. Using a Ubqln1-/- mouse strain, we found that B cell receptor (BCR) ligation of Ubqln1-/- B cells led to a defect in cell cycle entry. As in BJAB cells, mitochondrial proteins accumulated in BCR-stimulated cells, leading to protein synthesis inhibition and cell cycle block. Thus, UBQLN1 plays an important role in clearing mislocalized mitochondrial proteins upon cell stimulation, and its absence leads to suppression of protein synthesis and cell cycle arrest.


Subject(s)
B-Lymphocytes/physiology , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation , Mitochondrial Proteins/metabolism , Receptors, Antigen/metabolism , Adaptor Proteins, Signal Transducing , Animals , Autophagy-Related Proteins , Cell Line, Tumor , Humans , Mice , Mice, Knockout
11.
Proc Natl Acad Sci U S A ; 114(30): E6044-E6053, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28698362

ABSTRACT

Gram-negative bacteria express a diverse array of lipoproteins that are essential for various aspects of cell growth and virulence, including nutrient uptake, signal transduction, adhesion, conjugation, sporulation, and outer membrane protein folding. Lipoprotein maturation requires the sequential activity of three enzymes that are embedded in the cytoplasmic membrane. First, phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) recognizes a conserved lipobox motif within the prolipoprotein signal sequence and catalyzes the addition of diacylglycerol to an invariant cysteine. The signal sequence is then cleaved by signal peptidase II (LspA) to give an N-terminal S-diacylglyceryl cysteine. Finally, apolipoprotein N-acyltransferase (Lnt) catalyzes the transfer of the sn-1-acyl chain of phosphatidylethanolamine to this N-terminal cysteine, generating a mature, triacylated lipoprotein. Although structural studies of Lgt and LspA have yielded significant mechanistic insights into this essential biosynthetic pathway, the structure of Lnt has remained elusive. Here, we present crystal structures of wild-type and an active-site mutant of Escherichia coli Lnt. The structures reveal a monomeric eight-transmembrane helix fold that supports a periplasmic carbon-nitrogen hydrolase domain containing a Cys-Glu-Lys catalytic triad. Two lipids are bound at the active site in the structures, and we propose a putative phosphate recognition site where a chloride ion is coordinated near the active site. Based on these structures and complementary cell-based, biochemical, and molecular dynamics approaches, we propose a mechanism for substrate engagement and catalysis by E. coli Lnt.


Subject(s)
Acyltransferases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Lipoproteins/metabolism , Acylation , Acyltransferases/chemistry , Binding Sites , Catalytic Domain , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/chemistry , Mutation , Protein Conformation
12.
mBio ; 8(3)2017 05 23.
Article in English | MEDLINE | ID: mdl-28536290

ABSTRACT

Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro, the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for "group 2" capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates.IMPORTANCE Uropathogenic E. coli (UPEC) isolates represent a significant cause of nosocomial urinary tract and bloodstream infections. Many UPEC isolates are resistant to serum killing. Here, we show that a major cell-envelope lipoprotein (murein lipoprotein) is required for serum resistance in vitro and for complement-mediated bacterial clearance in vivo This is mediated, in part, through a novel mechanism by which murein lipoprotein affects the proper assembly of a key component of the machinery involved in production of "group 2" capsules. The absence of murein lipoprotein results in impaired production of the capsule layer, a known participant in complement resistance. These results demonstrate an important role for murein lipoprotein in complex interactions between different outer membrane biogenesis pathways and further highlight the importance of lipoprotein assembly and transport in bacterial pathogenesis.


Subject(s)
Bacterial Capsules/metabolism , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Lipoproteins/metabolism , Periplasmic Proteins/metabolism , Serum/microbiology , Uropathogenic Escherichia coli/physiology , Animals , Bacteremia/microbiology , Bacterial Outer Membrane Proteins/genetics , Blood Bactericidal Activity , Disease Models, Animal , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Lipoproteins/genetics , Mice , Microbial Viability , Mutation , Peptidoglycan/genetics , Uropathogenic Escherichia coli/genetics
13.
J Bacteriol ; 198(14): 2001-2015, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27161118

ABSTRACT

UNLABELLED: De novo guanine biosynthesis is an evolutionarily conserved pathway that creates sufficient nucleotides to support DNA replication, transcription, and translation. Bacteria can also salvage nutrients from the environment to supplement the de novo pathway, but the relative importance of either pathway during Staphylococcus aureus infection is not known. In S. aureus, genes important for both de novo and salvage pathways are regulated by a guanine riboswitch. Bacterial riboswitches have attracted attention as a novel class of antibacterial drug targets because they have high affinity for small molecules, are absent in humans, and regulate the expression of multiple genes, including those essential for cell viability. Genetic and biophysical methods confirm the existence of a bona fide guanine riboswitch upstream of an operon encoding xanthine phosphoribosyltransferase (xpt), xanthine permease (pbuX), inosine-5'-monophosphate dehydrogenase (guaB), and GMP synthetase (guaA) that represses the expression of these genes in response to guanine. We found that S. aureus guaB and guaA are also transcribed independently of riboswitch control by alternative promoter elements. Deletion of xpt-pbuX-guaB-guaA genes resulted in guanine auxotrophy, failure to grow in human serum, profound abnormalities in cell morphology, and avirulence in mouse infection models, whereas deletion of the purine salvage genes xpt-pbuX had none of these effects. Disruption of guaB or guaA recapitulates the xpt-pbuX-guaB-guaA deletion in vivo In total, the data demonstrate that targeting the guanine riboswitch alone is insufficient to treat S. aureus infections but that inhibition of guaA or guaB could have therapeutic utility. IMPORTANCE: De novo guanine biosynthesis and purine salvage genes were reported to be regulated by a guanine riboswitch in Staphylococcus aureus We demonstrate here that this is not true, because alternative promoter elements that uncouple the de novo pathway from riboswitch regulation were identified. We found that in animal models of infection, the purine salvage pathway is insufficient for S. aureus survival in the absence of de novo guanine biosynthesis. These data suggest targeting the de novo guanine biosynthesis pathway may have therapeutic utility in the treatment of S. aureus infections.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Guanine/biosynthesis , Purines/metabolism , Riboswitch , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism , Animals , Bacterial Proteins/genetics , Female , Humans , Mice , Staphylococcus aureus/genetics
14.
Microb Cell Fact ; 15: 47, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26935575

ABSTRACT

BACKGROUND: Protein secretion to the periplasm of Escherichia coli offers an attractive route for producing heterologous proteins including antibodies. In this approach, a signal peptide is fused to the N-terminus of the heterologous protein. The signal peptide mediates translocation of the heterologous protein from the cytoplasm to the periplasm and is cleaved during the translocation process. It was previously shown that optimization of the translation initiation region (TIR) which overlaps with the nucleotide sequence of the signal sequence improves the production of heterologous proteins. Despite the progress, there is still room to improve yields using secretion as a means to produce protein complexes such as full-length monoclonal antibodies (mAbs). RESULTS: In this study we identified the inefficient secretion of heavy chain as the limitation for full-length mAb accumulation in the periplasm. To improve heavy chain secretion we investigated the effects of various signal peptides at controlled TIR strengths. The signal peptide of disulfide oxidoreductase (DsbA) mediated more efficient secretion of heavy chain than the other signal peptides tested. Mutagenesis studies demonstrated that at controlled translational levels, hydrophobicity of the hydrophobic core (H-region) of the signal peptide is a critical factor for heavy chain secretion and full-length mAb accumulation in the periplasm. Increasing the hydrophobicity of a signal peptide enhanced heavy chain secretion and periplasmic levels of assembled full-length mAbs, while decreasing the hydrophobicity had the opposite effect. CONCLUSIONS: This study demonstrates that under similar translational strengths, the hydrophobicity of the signal peptide plays an important role in heavy chain secretion. Increasing the hydrophobicity of the H-region and controlling TIR strengths can serve as an approach to improve heavy chain secretion and full-length mAb production in E. coli.


Subject(s)
Antibodies/metabolism , Protein Engineering/methods , Protein Sorting Signals , Amino Acid Sequence , Antibodies, Monoclonal/metabolism , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Heavy Chains/metabolism , Inclusion Bodies/metabolism , Inclusion Bodies/ultrastructure , Molecular Sequence Data , Peptide Chain Initiation, Translational , Periplasm/metabolism
15.
Proc Natl Acad Sci U S A ; 112(47): 14664-9, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26561586

ABSTRACT

Dendritic cells (DCs) link innate and adaptive immunity and use a host of innate immune and inflammatory receptors to respond to pathogens and inflammatory stimuli. Although DC maturation via canonical NF-κB signaling is critical for many of these functions, the role of noncanonical NF-κB signaling via the serine/threonine kinase NIK (NF-κB-inducing kinase) remains unclear. Because NIK-deficient mice lack secondary lymphoid organs, we generated transgenic mice with targeted NIK deletion in CD11c(+) cells. Although these mice exhibited normal lymphoid organs, they were defective in cross-priming naive CD8(+) T cells following vaccination, even in the presence of anti-CD40 or polyinosinic:polycytidylic acid to induce DC maturation. This impairment reflected two intrinsic defects observed in splenic CD8(+) DCs in vitro, namely antigen cross-presentation to CD8(+) T cells and secretion of IL-12p40, a cytokine known to promote cross-priming in vivo. In contrast, antigen presentation to CD4(+) T cells was not affected. These findings reveal that NIK, and thus probably the noncanonical NF-κB pathway, is critical to allow DCs to acquire the capacity to cross-present antigen and prime CD8 T cells after exposure to licensing stimuli, such as an agonistic anti-CD40 antibody or Toll-like receptor 3 ligand.


Subject(s)
CD40 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Dendritic Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Antigen Presentation/immunology , CD11c Antigen/metabolism , Gene Deletion , Integrases/metabolism , Interleukin-12 Subunit p40/metabolism , Mice, Transgenic , Spleen/cytology , NF-kappaB-Inducing Kinase
16.
Nature ; 506(7489): 456-62, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24553140

ABSTRACT

Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspase 3/metabolism , Crohn Disease/genetics , Polymorphism, Single Nucleotide/genetics , Proteolysis , Amino Acid Motifs , Animals , Autophagy/genetics , Autophagy-Related Proteins , Carrier Proteins/chemistry , Caspase 3/deficiency , Caspase 3/genetics , Cell Line , Cells, Cultured , Crohn Disease/pathology , Cytokines/immunology , Enzyme Activation , Female , Food Deprivation , Humans , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Stress, Physiological , Yersinia enterocolitica/immunology
17.
Biomaterials ; 32(11): 3062-71, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21269687

ABSTRACT

Gene expression can be controlled in genetically modified cells by employing an inducer/promoter system where presence of the inducer molecule regulates the timing and level of gene expression. By applying the principles of controlled release, it should be possible to control gene expression on a biomaterial surface by the presence or absence of inducer release from the underlying material matrix, thus avoiding alternative techniques that rely upon uptake of relatively labile DNA from material surfaces. To evaluate this concept, a modified ecdysone-responsive gene expression system was transfected into B16 murine cells and the ability of an inducer ligand, which was released from elastomeric poly(ester urethane) urea (PEUU), to initiate gene expression was studied. The synthetic inducer ligand was first loaded into PEUU to demonstrate extended release of the bioactive molecule at various loading densities over a one year period in vitro. Patterning films of PEUU variably-loaded with inducer resulted in spatially controlled cell expression of the gene product (green fluorescent protein, GFP). In porous scaffolds made from PEUU by salt leaching, where the central region was exclusively loaded with inducer, cells expressed GFP predominately in the loaded central regions whereas expression was minimal in outer regions where ligand was omitted. This scaffold system may ultimately provide a means to precisely control progenitor cell commitment in a spatially-defined manner in vivo for soft tissue repair and regeneration.


Subject(s)
Biocompatible Materials/pharmacology , Gene Expression/drug effects , Animals , Cell Line, Tumor , Mice , Tissue Engineering
18.
Endocrinology ; 148(2): 575-84, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17110428

ABSTRACT

Osteopontin (OPN), a phosphorylated glycoprotein that binds to an integrin-binding motif, has been shown to regulate nitric oxide (NO) production via inhibition of induced NO synthase (iNOS) synthesis. In the transplanted islets, iNOS and toxic amounts of NO are produced as a result of islets infiltration with inflammatory cells and production of proinflammatory cytokines. Here, we demonstrate that addition of OPN before IL-1beta in freshly isolated rat islets improved their glucose stimulated insulin secretion dose-dependently and inhibited IL-1beta-induced NO production in an arginine-glycine-aspartate-dependent manner. Transient transfection of OPN gene in RINm5F beta-cells fully prevented the toxic effect of IL-1beta at concentrations that reduced the viability by 50% over 3 d. OPN prevention of IL-1beta-induced toxicity was accompanied by inhibited transcription of iNOS by 80%, resulting in 50% decreased formation of the toxic NO. In OPN-transfected cells, the IL-1beta-induced nuclear factor-kappaB activity was significantly reduced. Islets exposed to IL-1beta revealed a naturally occurring early up-regulated OPN transcription. OPN promoter activity was increased in the presence of IL-1beta, IL-1beta-induced NO, and an inducer of NO synthesis. These data suggest the presence of a cross talk between the IL-1beta and OPN pathways and a unique trans-regulatory mechanism in which IL-1beta-induced NO synthesis feedback regulates itself through up-regulation of OPN gene transcription. Our data also suggest that influencing OPN expression represents an approach for affecting cytokine-induced signal transduction to prevent or reduce activation of the cascade of downstream devastating effects after islet transplantation.


Subject(s)
Cytotoxins/pharmacology , Feedback, Physiological , Insulin-Secreting Cells/drug effects , Interleukin-1beta/pharmacology , Islets of Langerhans/drug effects , Nitric Oxide/metabolism , Osteopontin/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Cytotoxins/antagonists & inhibitors , Gene Expression/drug effects , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Islets of Langerhans/metabolism , Male , Mice , NF-kappa B/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide Synthase Type II/genetics , Oligopeptides/physiology , Osteopontin/genetics , Osteopontin/metabolism , Promoter Regions, Genetic/drug effects , RNA, Messenger/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...