Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Imaging (Bellingham) ; 10(5): 051810, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37915405

ABSTRACT

Purpose: Diagnosis and surveillance of thoracic aortic aneurysm (TAA) involves measuring the aortic diameter at various locations along the length of the aorta, often using computed tomography angiography (CTA). Currently, measurements are performed by human raters using specialized software for three-dimensional analysis, a time-consuming process, requiring 15 to 45 min of focused effort. Thus, we aimed to develop a convolutional neural network (CNN)-based algorithm for fully automated and accurate aortic measurements. Approach: Using 212 CTA scans, we trained a CNN to perform segmentation and localization of key landmarks jointly. Segmentation mask and landmarks are subsequently used to obtain the centerline and cross-sectional diameters of the aorta. Subsequently, a cubic spline is fit to the aortic boundary at the sinuses of Valsalva to avoid errors related inclusions of coronary artery origins. Performance was evaluated on a test set of 60 scans with automated measurements compared against expert manual raters. Result: Compared to training separate networks for each task, joint training yielded higher accuracy for segmentation, especially at the boundary (p<0.001), but a marginally worse (0.2 to 0.5 mm) accuracy for landmark localization (p<0.001). Mean absolute error between human and automated was ≤1 mm at six of nine standard clinical measurement locations. However, higher errors were noted in the aortic root and arch regions, ranging between 1.4 and 2.2 mm, although agreement of manual raters was also lower in these regions. Conclusion: Fully automated aortic diameter measurements in TAA are feasible using a CNN-based algorithm. Automated measurements demonstrated low errors that are comparable in magnitude to those with manual raters; however, measurement error was highest in the aortic root and arch.

2.
IEEE Trans Image Process ; 30: 3069-3083, 2021.
Article in English | MEDLINE | ID: mdl-33621175

ABSTRACT

Modern computer vision requires processing large amounts of data, both while training the model and/or during inference, once the model is deployed. Scenarios where images are captured and processed in physically separated locations are increasingly common (e.g. autonomous vehicles, cloud computing, smartphones). In addition, many devices suffer from limited resources to store or transmit data (e.g. storage space, channel capacity). In these scenarios, lossy image compression plays a crucial role to effectively increase the number of images collected under such constraints. However, lossy compression entails some undesired degradation of the data that may harm the performance of the downstream analysis task at hand, since important semantic information may be lost in the process. Moreover, we may only have compressed images at training time but are able to use original images at inference time (i.e. test), or vice versa, and in such a case, the downstream model suffers from covariate shift. In this paper, we analyze this phenomenon, with a special focus on vision-based perception for autonomous driving as a paradigmatic scenario. We see that loss of semantic information and covariate shift do indeed exist, resulting in a drop in performance that depends on the compression rate. In order to address the problem, we propose dataset restoration, based on image restoration with generative adversarial networks (GANs). Our method is agnostic to both the particular image compression method and the downstream task; and has the advantage of not adding additional cost to the deployed models, which is particularly important in resource-limited devices. The presented experiments focus on semantic segmentation as a challenging use case, cover a broad range of compression rates and diverse datasets, and show how our method is able to significantly alleviate the negative effects of compression on the downstream visual task.

SELECTION OF CITATIONS
SEARCH DETAIL
...