Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Phytopathology ; 106(3): 216-25, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26574784

ABSTRACT

Biological suppression of soilborne diseases with minimal use of outside interventive actions has been difficult to achieve in high input conventional crop production systems due to the inherent risk of pest resurgence. This review examines previous approaches to the management of soilborne disease as precursors to the evolution of a systems-based approach, in which plant disease suppression through natural biological feedback mechanisms in soil is incorporated into the design and operation of cropping systems. Two case studies are provided as examples in which a systems-based approach is being developed and deployed in the production of high value crops: lettuce/strawberry production in the coastal valleys of central California (United States) and sweet basil and other herb crop production in Israel. Considerations for developing and deploying system-based approaches are discussed and operational frameworks and metrics to guide their development are presented with the goal of offering a credible alternative to conventional approaches to soilborne disease management.


Subject(s)
Agriculture/methods , Decision Support Techniques , Plant Diseases/prevention & control , Soil Microbiology , Pest Control, Biological/methods , Pesticides/pharmacology
2.
Plant Dis ; 85(7): 735-739, 2001 Jul.
Article in English | MEDLINE | ID: mdl-30823198

ABSTRACT

The saltcedar shrub Tamarix nilotica grows as a weed in the Arava region of Israel. This weed is commonly found in cultivated fields naturally infested with Fusarium oxysporum f. sp. radicis-lycopersici, the causal agent of tomato crown and root rot. Young bushes, 20 to 40 cm tall, were randomly uprooted from different fields. The roots were cut into segments which were placed on Fusarium-selective medium. Although the plants did not show any symptoms of disease, the roots of the shrub were colonized by the pathogen. The incidence of infected saltcedar plants and level of root colonization by F. oxysporum f. sp. radicis-lycopersici decreased with increasing distance of the sampling location from a tomato field infected with crown and root rot. F. oxysporum f. sp. radicis-lycopersici was also isolated from chaff of inflorescence samples taken from mature T. nilotica shrubs. Identity of the pathogen isolates obtained from T. nilotica roots and chaff samples was verified by pathogenicity and vegetative compatibility tests. Roots of T. nilotica plants sown under greenhouse conditions in soil naturally infested with F. oxysporum f. sp. radicis-lycopersici became colonized by the pathogen. Uprooting and removing saltcedar plants throughout the season from fields not cultivated with tomatoes lowered the inoculum density of F. oxysporum f. sp. radicis-lycopersici in the soil from 611 to 6 and from 176 to 10 CFU/g of soil in the 1998-99 and 1999-2000 growing seasons, respectively. These results demonstrate that T. nilotica may contribute to the buildup of the pathogen populations in the absence of a susceptible host. Colonization of saltcedar by F. oxysporum f. sp. radicis-lycopersici is an additional mechanism for survival of this pathogen in the fields and for dissemination through the spread of infested seed or chaff of T. nilotica.

3.
Phytopathology ; 90(12): 1322-9, 2000 Dec.
Article in English | MEDLINE | ID: mdl-18943372

ABSTRACT

ABSTRACT Fusarium oxysporum f. sp. radicis-lycopersici, the causal agent of Fusarium crown and root rot of tomato, and F. oxysporum f. sp. basilici, the causal agent of Fusarium wilt in basil, are soilborne pathogens capable of producing conspicuous masses of macroconidia along the stem. The role of the airborne propagules in the epidemics of the disease in tomato plants was studied. In the field, airborne propagules of F. oxysporum f. sp. radicis-lycopersici were trapped with a selective medium and their prevalence was determined. Plants grown in both covered and uncovered pots, detached from the field soil, and exposed to natural aerial inoculum developed typical symptoms (82 to 87% diseased plants). The distribution of inoculum in the growth medium in the pots also indicated the occurrence of foliage infection. In greenhouse, foliage and root inoculations were carried out with both tomato and basil and their respective pathogens. Temperature and duration of high relative humidity affected rate of colonization of tomato, but not of basil, by the respective pathogens. Disease incidence in foliage-inoculated plants reached 75 to 100%. In these plants, downward movement of the pathogens from the foliage to the crown and roots was observed. Wounding enhanced pathogen invasion and establishment in the foliage-inoculated plants. The sporulation of the two pathogens on stems, aerial dissemination, and foliage infection raise the need for foliage protection in addition to soil disinfestation, in the framework of an integrated disease management program.

4.
Phytopathology ; 90(7): 751-7, 2000 Jul.
Article in English | MEDLINE | ID: mdl-18944494

ABSTRACT

ABSTRACT The effects of reduced doses of methyl bromide (MB) or metham sodium, heating, short solarization, and soil microbial activity, alone or in combination, on survival of soilborne fungal pathogens were tested in a controlled-environment system and field plots. Sublethal doses of heating or MB delayed germination of Sclerotium rolfsii sclerotia. Combining MB and heating treatments was more effective than either treatment alone in controlling S. rolfsii and Fusarium oxysporum f. sp. basilici. The application heating followed by fumigation with MB, was significantly more effective in delaying and reducing germination of S. rolfsii sclerotia and in controlling F. oxysporum f. sp. basilici than the opposite sequence. Further, incubation in soil and exposure to microbial activity of previously heated or MB-treated sclerotia increased the mortality rate, indicating a weakening effect. Similarly, incubation of chlamydospores of F. oxysporum f. sp. melonis and F. oxysporum f. sp. radicis-lycopersici in soil in the field after fumigation further reduced their survival, confirming the laboratory results. In field tests, combining MB or metham sodium at reduced doses with short solarization was more effective in controlling fungal pathogens than either treatment alone. Treatment sequence significantly affected pathogen control in the field, similar to its effect under controlled conditions. This study demonstrates a frequent synergistic effect of combining soil treatments and its potential for improving pathogen control and reducing pesticide dose, especially when an appropriate sequence was followed.

5.
Phytopathology ; 90(5): 529-36, 2000 May.
Article in English | MEDLINE | ID: mdl-18944560

ABSTRACT

A collection of 565 isolates of Verticillium dahliae, recovered between 1992 and 1997 from 13 host plant species and soil at 47 sites in Israel, was tested for vegetative compatibility using nitrate-nonutilizing (nit) mutants. Three vegetative compatibility groups (VCGs) were found and identified as VCG2A (28 isolates), VCG2B (158 isolates), and VCG4B (378 isolates) by using international reference strains. One isolate was heterokaryon self-incompatible. Of the VCG2B isolates, 92% were recovered from the northern part of Israel and 90% of VCG4B isolates were recovered from the south, with some overlap in the central region. Isolates of the minor group VCG2A were geographically scattered among the two major VCGs. Isolates of the same VCG resembled one another more than isolates from different VCGs based on colony and microsclerotial morphology, temperature responses, and, partially, pathogenicity. Different pathotypes were defined among 60 isolates tested, using cotton (cv. Acala SJ-2) and eggplant (cv. Black Beauty) as differentials. All isolates in VCG2A and 86% of the isolates in VCG4B, irrespective of their origin, induced weak to moderate symptoms on cotton and moderate to severe symptoms on eggplant and were similar to the previously described cotton nondefoliating patho-type. In contrast, all cotton isolates in VCG2B caused severe foliar symptoms, stunting, and often death, but little or no defoliation of inoculated cotton plants. These were defined as a cotton defoliating-like pathotype and induced only weak to moderate symptoms on eggplant. We concluded that vegetative compatibility grouping of V. dahliae in Israel is closely associated with specific pathogenicity and other phenotypic traits.

6.
Phytopathology ; 89(9): 831-9, 1999 Sep.
Article in English | MEDLINE | ID: mdl-18944713

ABSTRACT

ABSTRACT The spatial distribution and temporal development of tomato crown and root rot, caused by Fusarium oxysporum f. sp. radicis-lycopersici, were studied in naturally infested fields in 1996 and 1997. Disease progression fit a logistic model better than a monomolecular one. Geostatistical analyses and semivariogram calculations revealed that the disease spreads from infected plants to a distance of 1.1 to 4.4 m during the growing season. By using a chlorate-resistant nitrate nonutilizing (nit) mutant of F. oxysporum f. sp. radicis-lycopersici as a "tagged" inoculum, the pathogen was found to spread from one plant to the next via infection of the roots. The pathogen spread to up to four plants (2.0 m) on either side of the inoculated focus plant. Root colonization by the nit mutant showed a decreasing gradient from the site of inoculation to both sides of the inoculated plant. Simulation experiments in the greenhouse further established that this soilborne pathogen can spread from root to root during the growing season. These findings suggest a polycyclic nature of F. oxysporum f. sp. radicis-lycopersici, a deviation from the monocyclic nature of many nonzoosporic soilborne pathogens.

7.
Plant Dis ; 83(12): 1137-1141, 1999 Dec.
Article in English | MEDLINE | ID: mdl-30841138

ABSTRACT

Sudden wilt (vine decline) of melon, caused by Monosporascus cannonballus, is a worldwide problem in arid and semi-arid regions. Soil disinfestation by fumigation with methyl bromide before planting is a common treatment for disease management but, because methyl bromide is expected to be banned from use within the next 10 years, alternative measures for disease suppression are needed. The efficacy of 29 fungicides against M. cannonballus was evaluated in vitro. Among the fungicides tested, fluazinam and kresoxim methyl were the most effective and both totally inhibited the growth of M. cannonballus in culture at concentrations of 10 µg a.i /ml. Because fluazinam also was effective in inhibition of Pythium aphnidermatum, which also may be involved in sudden wilt syndrome, and kresoxim methyl was not, fluazinam was chosen for further tests. The effective dose of fluazinam for M. cannonballus that reduced mycelial growth by 50% was 0.09 µg a.i./ml. Fluazinam efficacy was evaluated in three field experiments conducted in the spring and in the late summer cropping seasons. In two of the experiments, applications of fluazinam resulted in approximately 87% wilt reduction, whereas in the third experiment it was only 32%. The mobility of fluazinam in soil was determined in samples taken from the field. Fungicide mobility in soil was relatively limited; most of the compound was adsorbed to soil particles, resulting in a zone of high concentration that decreased with depth and distance from the application site. Nevertheless, rates measured even at a depth of 25 cm were sufficient to control M. cannonballus. This study shows that fluazinam may be used as one component in an integrated approach for suppression of sudden wilt of melons.

8.
Phytopathology ; 87(7): 712-9, 1997 Jul.
Article in English | MEDLINE | ID: mdl-18945093

ABSTRACT

ABSTRACT Plants exhibiting symptoms of wilt and xylem discoloration typical of Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici were observed in greenhouses of cherry tomatoes at various sites in Israel. However, the lower stems of some of these plants were covered with a pink layer of macroconidia of F. oxysporum. This sign resembles the sporulating layer on stems of tomato plants infected with F. oxysporum f. sp. radicis-lycopersici, which causes the crown and root rot disease. Monoconidial isolates of F. oxysporum from diseased plants were assigned to vegetative compatibility group 0030 of F. oxysporum f. sp. lycopersici and identified as belonging to race 1 of F. oxysporum f. sp. lycopersici. The possibility of coinfection with F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was excluded by testing several macroconidia from each plant. Airborne propagules of F. oxysporum f. sp. lycopersici were trapped on selective medium in greenhouses in which plants with a sporulating layer had been growing. Sporulation on stems was reproduced by inoculating tomato plants with races 1 and 2 of F. oxysporum f. sp. lycopersici. This phenomenon has not been reported previously with F. oxysporum f. sp. lycopersici and might be connected to specific environmental conditions, e.g., high humidity. The sporulation of F. oxysporum f. sp. lycopersici on plant stems and the resultant aerial dissemination of macroconidia may have serious epidemiological consequences. Sanitation of the greenhouse structure, as part of a holistic disease management approach, is necessary to ensure effective disease control.

9.
Plant Dis ; 81(11): 1264-1268, 1997 Nov.
Article in English | MEDLINE | ID: mdl-30861731

ABSTRACT

Fungi belonging to five genera, Monosporascus sp., Pythium aphanidermatum, Rhizoctonia solani, Olpidium sp., Fusarium solani, and F. proliferatum, were the species most frequently isolated from the root systems of wilted melon. Diseased plants were collected from 24 fields in the northern and central Arava region of southern Israel during the fall seasons of 1994 and 1995. In pathogenicity tests conducted under field conditions, in artificially inoculated microplots, the first wilt symptoms were observed at various stages of fruit maturation. High mortality levels (73 to 97%) were recorded for inoculation combinations in which Monosporascus sp. was involved. Inoculations with the other fungi listed resulted in lower incidences of wilt. The combination of F. solani and P. aphanidermatum resulted in higher mortality than that caused by each pathogen alone. Monosporascus sp. seems to be the primary pathogen, although other fungi could also induce wilt. The dry weight of plants grown in naturally infested soil ceased to accumulate 33 days after transplanting, in contrast to plants grown in methyl bromide-treated soil. At this stage, the first wilt symptoms were observed. Fruit load affected wilt incidence. At the end of the growing season, 98% mortality was recorded for plants having the normal fruit load (2.5 fruits per plant) compared with 75 and 12% for plants that had their fruits thinned to one or zero per plant, respectively.

10.
Plant Dis ; 81(5): 469-474, 1997 May.
Article in English | MEDLINE | ID: mdl-30861924

ABSTRACT

The use of gas-impermeable films to reduce the dosage of methyl bromide (MB) required to control Verticillium wilt in potatoes was examined in field experiments, conducted in soils naturally infested with Verticillium dahliae. The incidence and severity of Verticillium wilt were significantly reduced (by 74 to 94%) by fumigation with MB at 50 g/m2 under standard low density polyethylene (LDPE) or at 25 g/m2 under gas-impermeable films. Fumigation at 25 g/m2 under LDPE was less effective. Disease severity was inversely correlated (r2 = 0.89 to 0.91) with chlorophyll content in the leaves. Fumigation also reduced (by 89 to 100%) stem colonization by the pathogen. Potato yield in the fumigated plots was significantly higher (26 to 69%), than in their nonfumigated counterparts, and was inversely correlated with disease index (r2 = 0.69 to 0.9). The percentage of high-value tubers (above 45 g) was 52 to 56% of total yield in the fumigated plots as compared with 32 to 40% in the nonfumigated controls. Thus, fumigation also improved the commercial quality of tuber yield. Effective control of V. dahliae and yield increases following MB fumigation at the recommended dosage or at a reduced dosage with gas-impermeable films was also observed in a consecutive crop. These results were verified in a large-scale field experiment using commercial applications, further demonstrating the feasibility of reducing MB dosages under farm conditions, without reducing its effectiveness in terms of disease control and yield improvement.

11.
Phytopathology ; 87(10): 1054-60, 1997 Oct.
Article in English | MEDLINE | ID: mdl-18945040

ABSTRACT

ABSTRACT Ten wild-type strains and two benomyl-resistant mutants of Talaromyces flavus were examined for their ability to secrete the cell wall-degrading enzymes chitinase, beta-1,3-glucanase, and cellulase, to parasitize sclerotia of Sclerotium rolfsii, to reduce bean stem rot caused by S. rolfsii, and to secrete antifungal substance(s) active against Verticillium dahliae. The benomyl-resistant mutant Ben(R)TF1-R6 overproduced extracellular enzymes and exhibited enhanced antagonistic activity against S. rolfsii and V. dahliae compared to the wild-type strains and other mu tants. Correlation analyses between the extracellular enzymatic activities of different isolates of T. flavus and their ability to antagonize S. rolfsii indicated that mycoparasitism by T. flavus and biological control of S rolfsii were related to the chitinase activity of T. flavus. On the other hand, production of antifungal compounds and glucose-oxidase activity may play a role in antagonism of V. dahliae by retardation of germination and hyphal growth and melanization of newly formed microsclerotia.

12.
Arch Insect Biochem Physiol ; 22(3-4): 451-66, 1993.
Article in English | MEDLINE | ID: mdl-8467100

ABSTRACT

Recent studies have demonstrated that interaction between various agrochemicals and soil microorganisms may either slow down or enhance processes of degradation. Soil disinfestation is employed for the control of soil-borne pathogens and weeds. Soil application of such broad-spectrum biocides, as well as some more selective chemicals, has a strong effect on microbial activity, which may result in drastic reduction in the rate of degradation of pesticides applied to such treated soils. Application of pesticides to previously disinfested soils may extend their biological activity, which in the case of herbicides could cause phytotoxic damage to the next crop. In contrast, repeated application of the same or structurally related pesticides may result in a selective buildup of microbial populations capable of degrading the pesticide at much faster rates. Cases of accelerated degradation were reported for pesticides belonging to various chemical groups. Studies were conducted to evaluate the mechanisms of accelerated degradation. For several pesticides it has been shown that soil fungi are involved in their normal degradation, but not in their accelerated degradation. The shift in the rate of degradation of pesticides such as diphenamid, benomyl, and S-ethyl dipropylthiocarbamate, in soils that have acquired accelerated degradation, seems to be associated with the buildup of populations of bacterial degraders. Moreover, it has been shown that for the herbicide diphenamide, accelerated degradation is apparently linked to the induction of an oxidative demethylation process in soil bacteria, which might be analogous to the development of resistance in pests. Contrary to studies demonstrating accelerated degradation of the systemic insecticide aldicarb and accumulation of aldicarb sulfoxide in non-history soils, our work has shown that repeated application of this carbamate at several locations in Israel over a 10-year period did not induce accelerated degradation. It should be pointed out that in the Israeli soils there was only minimal formation of aldicarb sulfoxide. These studies were performed in soils with a pH ranging from 7.8 to 8.3, which is higher than the pH reported for soils where accelerated degradation was detected.


Subject(s)
Aldicarb/metabolism , Benzimidazoles/metabolism , Carbamates , Diphenylacetic Acids/metabolism , Biodegradation, Environmental , Soil Microbiology , Soil Pollutants/metabolism
13.
Theor Appl Genet ; 82(1): 22-6, 1991 Jul.
Article in English | MEDLINE | ID: mdl-24212856

ABSTRACT

The inheritance and linkage relationships of a gene for resistance to Fusarium oxysporum f. sp. lycopersici race 1 were analyzed. An interspecific hybrid between a resistant Lycopersicon pennellii and a susceptible L. esculentum was backcrossed to L. esculentum. The genotype of each backcross-1 (BC1) plant with respect to its Fusarium response was determined by means of backcross-2 progeny tests. Resistance was controlled by a single dominant gene, I1, which was not allelic to I, the traditional gene for resistance against the same fungal pathogen that was derived from L. pimpinellifolium. Linkage analysis of 154 molecular markers that segregated in the BC1 population placed I1 between the RFLP markers TG20 and TG128 on chromosome 7. The flanking markers were used to verify the assignment of the I1 genotype in the segregating population. The results are discussed with reference to the possibility of cloning Fusarium resistance genes in tomato.

14.
Can J Microbiol ; 36(1): 15-23, 1990 Jan.
Article in English | MEDLINE | ID: mdl-2334872

ABSTRACT

The relationship between chemical structure and the enhancement of microbial degradation of three benzimidazole compounds in soil was determined. Preapplication of methyl benzimidazole-2-ylcarbamate (carbendazim or MBC), 2-aminobenzimidazole (2AB), and benzimidazole enhanced their degradation upon repeated application (self-enhanced degradation). MBC and 2AB cross-enhanced the degradation of each of these two compounds, whereas benzimidazole did not enhance the degradation of MBC. Thiabendazole (TBZ) did not enhance its own degradation or cross-enhance the degradation of MBC. No increase in the number of MBC-degrading fungi or in the capacity of soilborne fungi to degrade MBC was detected in soil exhibiting enhanced MBC degradation (MBC-history). A sharp increase in esterolytic activity in the microsomal fraction of Alternaria alternata capable of degrading MBC in culture was induced by the presence of MBC in the growth medium. 2AB was the main metabolite of MBC that accumulated in A. alternata cultures and in cell-free preparations. MBC was degraded much faster by mixed bacterial cultures that originated from MBC-history soil than in cultures from MBC-nonhistory soil. Fluctuations in the MBC degrading capacity of mixed bacterial cultures occurred during repeated subculturing of the mixed culture. Inoculation of nonhistory soil with mixed bacterial cultures resulted in enhanced MBC degradation, whereas inoculation with A. alternata did not enhance MBC degradation. It is suggested that while fungi contribute to MBC dissipation in soil, bacteria have a greater role in enhanced biodegradation of MBC in soil.


Subject(s)
Benzimidazoles/metabolism , Carbamates , Fungicides, Industrial/metabolism , Mitosporic Fungi/metabolism , Soil Microbiology , Acremonium/growth & development , Acremonium/metabolism , Alternaria/growth & development , Alternaria/metabolism , Biodegradation, Environmental , Mitosporic Fungi/growth & development
15.
Theor Appl Genet ; 78(5): 755-9, 1989 Nov.
Article in English | MEDLINE | ID: mdl-24225839

ABSTRACT

The locus, I2, which in tomato confers resistance against Fusarium oxysporum f. sp. lycopersici race 2, was introgressed into Lycopersicon esculentum from the wild species L. pimpinellifolium (P.I. 126915). We searched for restriction fragment length polymorphisms (RFLPs) between nearly isogenic lines (NILs) in clones that map to the region introgressed from the wild species. Since I2 maps to chromosome 11, we used DNA clones from this chromosome as hybridization probes to Southern blots containing bound DNA of the NILs digested with 23 restriction enzymes. Of the 14 chromosome 11 clones, 9 exhibited polymorphism. These clones were further hybridized to "verification" filters that contained DNA from resistant and susceptible L. esculentum varieties digested with the enzymes that gave the polymorphism. One clone, TG105, was found to be associated with I2; 19 susceptible lines showed a different RFLP with this probe than 16 resistant lines, including the original L. pimpinellifolium accession used as a source for the resistance gene. These results together with our mapping analysis indicate that TG105 is closely linked to the resistance gene.

16.
Adm Soc Work ; 8(1): 73-87, 1984.
Article in English | MEDLINE | ID: mdl-10310505

ABSTRACT

Many Human Service Organizations (HSOs) employ professionals and non-professional workers drawn from different occupational groups. The author presents seven factors that might affect the processes of role formation and division of work: the profession, the organization, power relationships among workers, the dominant profession, consensual decision making in workers' groups, client effects, and individual characteristics. The discussion highlights the dearth of knowledge on these issues, and the necessity for systematic and comprehensive study directed toward identifying the factors affecting the emergence of a variety of role formation and division of work patterns in HSOs.


Subject(s)
Health Facilities , Social Work/organization & administration , Humans , Interprofessional Relations , Role , United States
18.
Science ; 193(4256): 891-4, 1976 Sep 03.
Article in English | MEDLINE | ID: mdl-948750

ABSTRACT

A steady decrease of extractable [14C] parathion residues in soils over a 1-month incubation period was accompanied by an increase of unextractable, bound 14C-labeled residues, resulting finally in total recoveries of extracted plus bound residues of 80 to 87 percent of the applied radiocarbon. Soils containing bound residues were nontoxic to fruit flies. Binding of 14C-labeled residues was related to the activity of soil microorganisms; soil sterilization resulted in a reduction of binding by 58 to 84 percent. Under flooded (anaerobic) conditions, the binding of compounds labeled with 14C doubled, and parathion was reduced to aminoparathion. Reinoculation of sterilized flooded soil fully reinstated the binding capacity. [14C] Aminoparathion was preferentially bound to soil, since its binding within 2 hours was 30 times greater than that of [14C] parathion. Because of the existence of formerly "unseen," unextractable residues, the concept of "persistent" and "nonpersistent" pesticide residues might have to be reconsidered.


Subject(s)
Parathion/analysis , Pesticide Residues/analysis , Soil Pollutants/analysis , Binding Sites , Soil Microbiology , Solubility
20.
Can J Microbiol ; 21(9): 1298, 1975 Sep.
Article in English | MEDLINE | ID: mdl-241478

ABSTRACT

The sequence of appearance of cell wall degrading enzymes of Rhizoctonia solani propagules was followed. Polygalacturonase (PG; EC 3.2.1.15) was induced earlier by sodium polypectate (NaPP) as compared with the induction of cellulase (Cx; EC 3.2.1.4) by carboxymethyl cellulose (CMC), cellobiose, or fibrous cellulose powder. Increasing CMC concentration to 0.5% shortened the time of Cx appearance. In Czapek medium containing citrus pectin, pectin lyase (PL; EC 4.2.2.10) was produced faster and at higher amounts than in a medium containing NaPP as the sole carbon source. PG appearance also preceded that of PL in media simultaneously supplemented with their respective inducers. NaPP, which induced production of PG, repressed Cx production. Among the Cx inducers, only CMC and cellobiose repressed PG production to any extent. At pH 6.0, either in a synthetic medium or on autoclaved bean hypocotyl segments, a delay in PG production as compared with Cx and Pl production was observed. Optimal pH levels for enzyme production and activity were 4.0 and 5.0 for PG, and 5.5 for Cx, and 8.0 and 7.5 for PL. PG was less repressed than Cx by glucose, cellobiose, and monogalacturonic acid, while PL was not affected.


Subject(s)
Cellulase/biosynthesis , Glycoside Hydrolases/biosynthesis , Lyases/biosynthesis , Mitosporic Fungi/enzymology , Rhizoctonia/enzymology , Carboxymethylcellulose Sodium/pharmacology , Culture Media , Disaccharides/pharmacology , Enzyme Induction , Enzyme Repression , Galactose , Glucose/pharmacology , Hydrogen-Ion Concentration , Pectins/pharmacology , Uronic Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...