Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 20513, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443316

ABSTRACT

In a murine model of acute ischemic stroke, SIRT6 knockdown resulted in larger cerebral infarct size, worse neurological outcome, and higher mortality, indicating a possible neuro-protective role of SIRT6. In this study, we aimed at evaluating the prognostic value of serum SIRT6 levels in patients with acute ischemic stroke (AIS). Serum levels of SIRT6, collected within 72 h from symptom-onset, were measured in 317 consecutively enrolled AIS patients from the COSMOS cohort. The primary endpoint of this analysis was 90-day mortality. The independent prognostic value of SIRT6 was assessed with multivariate logistic and Cox proportional regression models. 35 patients (11%) deceased within 90-day follow-up. After adjustment for established risk factors (age, NIHSS, heart failure, atrial fibrillation, and C reactive protein), SIRT6 levels were negatively associated with mortality. The optimal cut-off for survival was 634 pg/mL. Patients with SIRT6 levels below this threshold had a higher risk of death in multivariable Cox regression. In this pilot study, SIRT6 levels were significantly associated with 90-day mortality after AIS; these results build on previous molecular and causal observations made in animal models. Should this association be confirmed, SIRT6 could be a potential prognostic predictor and therapeutic target in AIS.


Subject(s)
Atrial Fibrillation , Ischemic Stroke , Sirtuins , Animals , Mice , Cerebral Infarction , Glycosyltransferases , Pilot Projects
2.
Swiss Med Wkly ; 145: w14138, 2015.
Article in English | MEDLINE | ID: mdl-26024210

ABSTRACT

Each year, over 5 million people die worldwide from stroke, and at least every sixth patient who survives will experience another stroke within five years [1]. We are therefore eager to advance early and rapid diagnosis, prognosis and optimal risk stratification, as well as secondary prevention. In this context, blood biomarkers may improve patient care, as they have already done in other fields in the past, for example, troponin T/I in patients with heart attacks, natriuretic peptides in patients with heart failure or PCT (procalcitonin) [2] in patients with pneumonia. In the setting of acute stroke, a blood biomarker can be any quantifiable entity that reflects the manifestation of a stroke-related process. The most fruitful implementation of stroke biomarkers is in areas where information from traditional clinical sources is limited. There may be markers, for example, to guide risk stratification, reveal stroke aetiology, identify patients who may benefit most from interventions, monitor treatment efficacy, and recognise the risk of short-term complications or unfavourable long-term outcomes. For this review we focus on blood biomarkers that could help distinguish the underlying aetiology of an ischaemic stroke. Stroke tends to be a much more heterogeneous condition than ischaemic heart disease, which is caused by atherosclerosis in the vast majority of cases. Causes of stroke include small and large vessel disease, cardioembolism, dissections, and rare vasculo- and coagulopathies, among others. Because of this heterogeneity among stroke patients, it is clear that a monolithic approach to stroke prevention or secondary prevention is not warranted. Aetiological classification is important specifically because prognosis, risk of recurrence and management options differ greatly between aetiological subtypes. Considering that today up to 30% of stroke patients still cannot be classified into a specific subtype [3], the ability to improve aetiological classification to direct prevention methods at the underlying mechanism would be of greatest interest. For this review we collected data from studies, on aetiological blood biomarkers in ischaemic stroke patients, listed in PubMed up to October 2014. We describe the potential role of 22 selected blood biomarkers in the context of stroke aetiology. Finally we provide the readers with an outlook in this research field.


Subject(s)
Biomarkers/blood , Brain Ischemia/blood , Brain Ischemia/etiology , Stroke/blood , Stroke/etiology , Atherosclerosis/complications , Embolism/complications , Humans , Secondary Prevention , Stroke/classification , Stroke/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...