Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Chem Biol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811854

ABSTRACT

Cysteine cathepsins are a family of proteases that are relevant therapeutic targets for the treatment of different cancers and other diseases. However, no clinically approved drugs for these proteins exist, as their systemic inhibition can induce deleterious side effects. To address this problem, we developed a modular antibody-based platform for targeted drug delivery by conjugating non-natural peptide inhibitors (NNPIs) to antibodies. NNPIs were functionalized with reactive warheads for covalent inhibition, optimized with deep saturation mutagenesis and conjugated to antibodies to enable cell-type-specific delivery. Our antibody-peptide inhibitor conjugates specifically blocked the activity of cathepsins in different cancer cells, as well as osteoclasts, and showed therapeutic efficacy in vitro and in vivo. Overall, our approach allows for the rapid design of selective cathepsin inhibitors and can be generalized to inhibit a broad class of proteases in cancer and other diseases.

2.
Proc Natl Acad Sci U S A ; 121(18): e2311374121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648478

ABSTRACT

The control of eukaryotic gene expression is intimately connected to highly dynamic chromatin structures. Gene regulation relies on activator and repressor transcription factors (TFs) that induce local chromatin opening and closing. However, it is unclear how nucleus-wide chromatin organization responds dynamically to the activity of specific TFs. Here, we examined how two TFs with opposite effects on local chromatin accessibility modulate chromatin dynamics nucleus-wide. We combine high-resolution diffusion mapping and dense flow reconstruction and correlation in living cells to obtain an imaging-based, nanometer-scale analysis of local diffusion processes and long-range coordinated movements of both chromatin and TFs. We show that the expression of either an individual transcriptional activator (CDX2) or repressor (SIX6) with large numbers of binding sites increases chromatin mobility nucleus-wide, yet they induce opposite coherent chromatin motions at the micron scale. Hi-C analysis of higher-order chromatin structures shows that induction of the pioneer factor CDX2 leads both to changes in local chromatin interactions and the distribution of A and B compartments, thus relating the micromovement of chromatin with changes in compartmental structures. Given that inhibition of transcription initiation and elongation by RNA Pol II has a partial impact on the global chromatin dynamics induced by CDX2, we suggest that CDX2 overexpression alters chromatin structure dynamics both dependently and independently of transcription. Our biophysical analysis shows that sequence-specific TFs can influence chromatin structure on multiple architectural levels, arguing that local chromatin changes brought by TFs alter long-range chromatin mobility and its organization.


Subject(s)
Chromatin , Transcription Factors , Chromatin/metabolism , Chromatin/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Gene Expression Regulation , Cell Nucleus/metabolism , Binding Sites , Chromatin Assembly and Disassembly
3.
Nature ; 615(7954): 925-933, 2023 03.
Article in English | MEDLINE | ID: mdl-36922594

ABSTRACT

Whole-genome doubling (WGD) is a recurrent event in human cancers and it promotes chromosomal instability and acquisition of aneuploidies1-8. However, the three-dimensional organization of chromatin in WGD cells and its contribution to oncogenic phenotypes are currently unknown. Here we show that in p53-deficient cells, WGD induces loss of chromatin segregation (LCS). This event is characterized by reduced segregation between short and long chromosomes, A and B subcompartments and adjacent chromatin domains. LCS is driven by the downregulation of CTCF and H3K9me3 in cells that bypassed activation of the tetraploid checkpoint. Longitudinal analyses revealed that LCS primes genomic regions for subcompartment repositioning in WGD cells. This results in chromatin and epigenetic changes associated with oncogene activation in tumours ensuing from WGD cells. Notably, subcompartment repositioning events were largely independent of chromosomal alterations, which indicates that these were complementary mechanisms contributing to tumour development and progression. Overall, LCS initiates chromatin conformation changes that ultimately result in oncogenic epigenetic and transcriptional modifications, which suggests that chromatin evolution is a hallmark of WGD-driven cancer.


Subject(s)
Chromatin , Chromosome Aberrations , Chromosome Segregation , Chromosomes, Human , Genome, Human , Neoplasms , Humans , Chromatin/genetics , Chromatin/metabolism , Neoplasms/genetics , Chromosomes, Human/genetics , Genome, Human/genetics , Chromosome Segregation/genetics , Carcinogenesis/genetics , Epigenesis, Genetic , Disease Progression , Transcription, Genetic , Gene Expression Regulation, Neoplastic
4.
Nat Genet ; 53(5): 650-662, 2021 05.
Article in English | MEDLINE | ID: mdl-33972799

ABSTRACT

In cancer cells, enhancer hijacking mediated by chromosomal alterations and/or increased deposition of acetylated histone H3 lysine 27 (H3K27ac) can support oncogene expression. However, how the chromatin conformation of enhancer-promoter interactions is affected by these events is unclear. In the present study, by comparing chromatin structure and H3K27ac levels in normal and lymphoma B cells, we show that enhancer-promoter-interacting regions assume different conformations according to the local abundance of H3K27ac. Genetic or pharmacological depletion of H3K27ac decreases the frequency and the spreading of these interactions, altering oncogene expression. Moreover, enhancer hijacking mediated by chromosomal translocations influences the epigenetic status of the regions flanking the breakpoint, prompting the formation of distinct intrachromosomal interactions in the two homologous chromosomes. These interactions are accompanied by allele-specific gene expression changes. Overall, our work indicates that H3K27ac dynamics modulates interaction frequency between regulatory regions and can lead to allele-specific chromatin configurations to sustain oncogene expression.


Subject(s)
Alleles , Chromatin/chemistry , Genetic Loci , Histones/metabolism , Nucleic Acid Conformation , Oncogenes , Acetylation , Base Pairing/genetics , Cell Line, Tumor , Enhancer Elements, Genetic , Epigenesis, Genetic , Gene Dosage , Humans , Lysine/metabolism , Promoter Regions, Genetic
5.
Cancer Cell ; 37(5): 674-689.e12, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32330455

ABSTRACT

Genomic alterations in cancer cells can influence the immune system to favor tumor growth. In non-Hodgkin lymphoma, physiological interactions between B cells and the germinal center microenvironment are coopted to sustain cancer cell proliferation. We found that follicular lymphoma patients harbor a recurrent hotspot mutation targeting tyrosine 132 (Y132D) in cathepsin S (CTSS) that enhances protein activity. CTSS regulates antigen processing and CD4+ and CD8+ T cell-mediated immune responses. Loss of CTSS activity reduces lymphoma growth by limiting communication with CD4+ T follicular helper cells while inducing antigen diversification and activation of CD8+ T cells. Overall, our results suggest that CTSS inhibition has non-redundant therapeutic potential to enhance anti-tumor immune responses in indolent and aggressive lymphomas.


Subject(s)
Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cathepsins/genetics , Lymphoma, Non-Hodgkin/immunology , Mutation , Tumor Microenvironment/immunology , Animals , Apoptosis , B-Lymphocytes/immunology , Cell Proliferation , Female , Germinal Center/immunology , Humans , Lymphocyte Activation/immunology , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology , Tumor Cells, Cultured
6.
Nat Genet ; 51(3): 517-528, 2019 03.
Article in English | MEDLINE | ID: mdl-30692681

ABSTRACT

Chromatin is organized into topologically associating domains (TADs) enriched in distinct histone marks. In cancer, gain-of-function mutations in the gene encoding the enhancer of zeste homolog 2 protein (EZH2) lead to a genome-wide increase in histone-3 Lys27 trimethylation (H3K27me3) associated with transcriptional repression. However, the effects of these epigenetic changes on the structure and function of chromatin domains have not been explored. Here, we found a functional interplay between TADs and epigenetic and transcriptional changes mediated by mutated EZH2. Altered EZH2 (p.Tyr646* (EZH2Y646X)) led to silencing of entire domains, synergistically inactivating multiple tumor suppressors. Intra-TAD gene silencing was coupled with changes of interactions between gene promoter regions. Notably, gene expression and chromatin interactions were restored by pharmacological inhibition of EZH2Y646X. Our results indicate that EZH2Y646X alters the topology and function of chromatin domains to promote synergistic oncogenic programs.


Subject(s)
Chromatin/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Epigenesis, Genetic/genetics , Mutation/genetics , Transcription, Genetic/genetics , Animals , Cell Line, Tumor , DNA Methylation/genetics , Epigenomics/methods , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing/physiology , Histones/genetics , Humans , Mice , Promoter Regions, Genetic/genetics
7.
Blood ; 131(21): 2345-2356, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29567799

ABSTRACT

In diffuse large B-cell lymphoma (DLBCL), activation of the B-cell receptor (BCR) promotes multiple oncogenic signals, which are essential for tumor proliferation. Inhibition of the Bruton's tyrosine kinase (BTK), a BCR downstream target, is therapeutically effective only in a subgroup of patients with DLBCL. Here, we used lymphoma cells isolated from patients with DLBCL to measure the effects of targeted therapies on BCR signaling and to anticipate response. In lymphomas resistant to BTK inhibition, we show that blocking BTK activity enhanced tumor dependencies from alternative oncogenic signals downstream of the BCR, converging on MYC upregulation. To completely ablate the activity of the BCR, we genetically and pharmacologically repressed the activity of the SRC kinases LYN, FYN, and BLK, which are responsible for the propagation of the BCR signal. Inhibition of these kinases strongly reduced tumor growth in xenografts and cell lines derived from patients with DLBCL independent of their molecular subtype, advancing the possibility to be relevant therapeutic targets in broad and diverse groups of DLBCL patients.


Subject(s)
Lymphoma, Non-Hodgkin/etiology , Lymphoma, Non-Hodgkin/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/drug effects , src-Family Kinases/antagonists & inhibitors , Adenine/analogs & derivatives , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Gene Expression , Genes, myc , Humans , Lymphoma, Non-Hodgkin/drug therapy , Lymphoma, Non-Hodgkin/pathology , Mice , Mice, Knockout , Piperidines , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays
8.
Mol Cell Oncol ; 4(6): e1365107, 2017.
Article in English | MEDLINE | ID: mdl-29209652

ABSTRACT

SESTRIN1 is a tumor suppressor in follicular lymphoma that controls mTORC1 activity and it is inactivated by chromosomal deletions or epigenetically silenced by mutant EZH2Y641X. Pharmacological inhibition of EZH2 promotes SESTRIN1 re-expression and it restores its tumor suppressive activity, suggesting the possibility to epigenetically control mTORC1 activity.

9.
Sci Transl Med ; 9(396)2017 06 28.
Article in English | MEDLINE | ID: mdl-28659443

ABSTRACT

Follicular lymphoma (FL) is an incurable form of B cell lymphoma. Genomic studies have cataloged common genetic lesions in FL such as translocation t(14;18), frequent losses of chromosome 6q, and mutations in epigenetic regulators such as EZH2 Using a focused genetic screen, we identified SESTRIN1 as a relevant target of the 6q deletion and demonstrate tumor suppression by SESTRIN1 in vivo. Moreover, SESTRIN1 is a direct target of the lymphoma-specific EZH2 gain-of-function mutation (EZH2Y641X ). SESTRIN1 inactivation disrupts p53-mediated control of mammalian target of rapamycin complex 1 (mTORC1) and enables mRNA translation under genotoxic stress. SESTRIN1 loss represents an alternative to RRAGC mutations that maintain mTORC1 activity under nutrient starvation. The antitumor efficacy of pharmacological EZH2 inhibition depends on SESTRIN1, indicating that mTORC1 control is a critical function of EZH2 in lymphoma. Conversely, EZH2Y641X mutant lymphomas show increased sensitivity to RapaLink-1, a bifunctional mTOR inhibitor. Hence, SESTRIN1 contributes to the genetic and epigenetic control of mTORC1 in lymphoma and influences responses to targeted therapies.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Heat-Shock Proteins/genetics , Lymphoma, Follicular/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Chromosome Deletion , Chromosomes, Human, Pair 6/genetics , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Gene Silencing , Genetic Testing , Genome, Human , Heat-Shock Proteins/deficiency , Humans , Mice , Mutation/genetics , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Eur J Neurosci ; 39(8): 1245-55, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24443946

ABSTRACT

Intracellular signaling in insect olfactory receptor neurons remains unclear, with both metabotropic and ionotropic components being discussed. Here, we investigated the role of heterotrimeric Go and Gi proteins using a combined behavioral, in vivo and in vitro approach. Specifically, we show that inhibiting Go in sensory neurons by pertussis toxin leads to behavioral deficits. We heterologously expressed the olfactory receptor dOr22a in human embryonic kidney cells (HEK293T). Stimulation with an odor led to calcium influx, which was amplified via calcium release from intracellular stores. Subsequent experiments indicated that the signaling was mediated by the Gßγ subunits of the heterotrimeric Go/i proteins. Finally, using in vivo calcium imaging, we show that Go and Gi contribute to odor responses both for the fast (phasic) as for the slow (tonic) response component. We propose a transduction cascade model involving several parallel processes, in which the metabotropic component is activated by Go and Gi , and uses Gßγ.


Subject(s)
Calcium Signaling , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Receptors, Odorant/metabolism , Smell , Animals , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , HEK293 Cells , Humans , Pertussis Toxin/pharmacology , Protein Binding , Receptors, Odorant/antagonists & inhibitors , Receptors, Odorant/genetics , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology
11.
PLoS One ; 5(8): e12331, 2010 Aug 23.
Article in English | MEDLINE | ID: mdl-20808795

ABSTRACT

Drosophila genome encodes six alpha-subunits of heterotrimeric G proteins. The Galphas alpha-subunit is involved in the post-eclosion wing maturation, which consists of the epithelial-mesenchymal transition and cell death, accompanied by unfolding of the pupal wing into the firm adult flight organ. Here we show that another alpha-subunit Galphao can specifically antagonize the Galphas activities by competing for the Gbeta13F/Ggamma1 subunits of the heterotrimeric Gs protein complex. Loss of Gbeta13F, Ggamma1, or Galphas, but not any other G protein subunit, results in prevention of post-eclosion cell death and failure of the wing expansion. However, cell death prevention alone is not sufficient to induce the expansion defect, suggesting that the failure of epithelial-mesenchymal transition is key to the folded wing phenotypes. Overactivation of Galphas with cholera toxin mimics expression of constitutively activated Galphas and promotes wing blistering due to precocious cell death. In contrast, co-overexpression of Gbeta13F and Ggamma1 does not produce wing blistering, revealing the passive role of the Gbetagamma in the Galphas-mediated activation of apoptosis, but hinting at the possible function of Gbetagamma in the epithelial-mesenchymal transition. Our results provide a comprehensive functional analysis of the heterotrimeric G protein proteome in the late stages of Drosophila wing development.


Subject(s)
Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Protein Multimerization , Wings, Animal/growth & development , Animals , Binding, Competitive , Cell Death , Cholera Toxin/pharmacology , Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Epithelial Cells/cytology , Female , GTP-Binding Proteins/genetics , Gene Expression Regulation/drug effects , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Humans , Male , Mesoderm/cytology , Mutation , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Proteome/metabolism , Signal Transduction , Substrate Specificity
12.
EMBO J ; 27(3): 509-21, 2008 Feb 06.
Article in English | MEDLINE | ID: mdl-18219274

ABSTRACT

The lipid-modified morphogens Wnt and Hedgehog diffuse poorly in isolation yet can spread over long distances in vivo, predicting existence of two distinct forms of these morphogens. The first is poorly mobile and activates short-range target genes. The second is specifically packed for efficient spreading to induce long-range targets. Subcellular mechanisms involved in the discriminative secretion of these two forms remain elusive. Wnt and Hedgehog can associate with membrane microdomains, but the function of this association was unknown. Here we show that a major protein component of membrane microdomains, reggie-1/flotillin-2, plays important roles in secretion and spreading of Wnt and Hedgehog in Drosophila. Reggie-1 loss-of-function results in reduced spreading of the morphogens, while its overexpression stimulates secretion of Wnt and Hedgehog and expands their diffusion. The resulting changes in the morphogen gradients differently affect the short- and long-range targets. In its action reggie-1 appears specific for Wnt and Hedgehog. These data suggest that reggie-1 is an important component of the Wnt and Hedgehog secretion pathway dedicated to formation of the mobile pool of these morphogens.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/physiology , Hedgehog Proteins/metabolism , Membrane Proteins/physiology , Proto-Oncogene Proteins/metabolism , Signal Transduction/physiology , Animals , Cell Line , Membrane Microdomains/chemistry , Membrane Microdomains/genetics , Membrane Microdomains/metabolism , Membrane Microdomains/physiology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Protein Isoforms/deficiency , Protein Isoforms/genetics , Protein Isoforms/physiology , Signal Transduction/genetics , Wings, Animal/physiology , Wnt1 Protein
13.
Nat Cell Biol ; 7(1): 86-92, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15592457

ABSTRACT

The Hedgehog (Hh) signalling pathway is crucial for animal development and is aberrantly activated in several types of cancer. In Drosophila melanogaster, Hh signalling regulates target gene expression through the transcription factor Cubitus interruptus (Ci). Together, Protein Kinase A, Casein Kinase 1 and Glycogen Synthase Kinase 3 silence the pathway in the absence of ligand by phosphorylating Ci at a defined cluster of sites, thereby promoting its proteolytic conversion to a transcriptional repressor (Ci-75). In the presence of Hh, Ci-155 is no longer converted to Ci-75 and its ability to activate transcription is potentiated. All Hh responses require the seven transmembrane domain protein Smoothened, which itself becomes hyperphosphorylated during Hh signalling. Here we show that a cluster of protein kinase A and protein kinase A-primed casein kinase 1 phosphorylation sites in Smoothened, similarly distributed to those regulating Ci, are essential for Smoothened to transduce a Hh signal and for normal regulation of Smoothened protein levels.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Amino Acid Sequence , Animals , Binding Sites/physiology , Body Patterning/genetics , Casein Kinase I/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/physiology , Gene Expression Regulation, Developmental/genetics , Glycogen Synthase Kinase 3/metabolism , Hedgehog Proteins , Molecular Sequence Data , Phosphorylation , Receptors, G-Protein-Coupled/genetics , Smoothened Receptor , Transcription Factors , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...