Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(2): e10925, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38333092

ABSTRACT

The water chestnut Trapa bispinosa Roxb. has been domesticated in China and has been reported as the only domesticated species of this genus. To understand the origin of T. bispinosa and its evolution pathway, we compared the genetic similarity and seed morphology of domesticated water chestnut T. bispinosa with three wild species T. natans, T. incisa, and T. japonica along with archeological seed samples from the Tianluoshan site (approximately 7000-6300 cal BP) in China. The largest seed size was observed only in the domesticated species, whereas other wild species showed smaller size including T. natans L. genetically close to the domesticated type, and T. incisa was the smallest in size. The volumes of the seed capsule and endosperm were measured using X ray CT scans, showing the ratios of total volumes between T. bispinosa and wild species ranged from 4.2 to 4.5. The ratios of endosperm volume ranged from 3.3 to 3.7. Both measurements showed domesticated species have larger seed volume. Genome size was indirectly estimated by flow cytometry. Domesticated species with larger seed size was estimated as diploid, as were the wild species except for tetraploid species T. japonica. Domesticated species clearly showed the largest edible organs, but it was not a result of ploidy level changes. Maternal lineages traced using complete whole chloroplast sequences, suggested that T. natans is the closest to T. bispinosa, both of which are close to T. japonica. The result was confirmed by PCR genotyping with chloroplast insertion/deletion (cpINDEL) markers developed in the study. T. incisa showed distinct plastid types within the species, and T. japonica showed a unique plastid genotype. Our study concludes the largest volumes for the edible endosperm have been accomplished through nearly 6000 years of artificial selection, but the domestication did not involve ploidy level changes.

2.
Carcinogenesis ; 44(4): 341-349, 2023 06 24.
Article in English | MEDLINE | ID: mdl-36753047

ABSTRACT

Chronic inflammation is widely recognized as a major risk factor for cancer formation, but the underlying mechanisms are poorly understood. Recently, it was shown that Gasdermin D (GSDMD) protein drives pyroptotic cell death in macrophages on cleavage by inflammatory caspases. Even though the Gsdmd gene is specifically expressed in the intestinal epithelium, the role of Gsdmd in the intestinal tissues remains poorly characterized. In this study, we examined the biological role of Gsdmd in colorectal cancer (CRC) development, employing an azoxymethane/dextran sulfate sodium carcinogenesis model. Results show that GSDMD deficiency enhances CRC development, probably due to decreased apoptosis caused by downregulation of interferon-gamma (IFNγ)-signal transducer and activator 1 (STAT1) signaling. Furthermore, we show that GSDMD protein is diminished in human colorectal cancer, indicating involvement of GSDMD in repression of CRC development in humans. Our findings provide a new insight into functions of Gsdmd/GSDMD in colonic inflammation and human CRC development.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Gasdermins , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/genetics , Apoptosis , Inflammation , Colonic Neoplasms/genetics
3.
G3 (Bethesda) ; 7(10): 3449-3457, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28855285

ABSTRACT

Trabecular bone structure has an important influence on bone strength, but little is known about its genetic regulation. To elucidate the genetic factor(s) regulating trabecular bone structure, we compared the trabecular bone structures of two genetically remote mouse strains, C57BL/6J and Japanese wild mouse-derived MSM/Ms. Phenotyping by X-ray micro-CT revealed that MSM/Ms has structurally more fragile trabecular bone than C57BL/6J. Toward identification of genetic determinants for the difference in fragility of trabecular bone between the two mouse strains, we employed phenotype screening of consomic mouse strains in which each C57BL/6J chromosome is substituted by its counterpart from MSM/Ms. The results showed that many chromosomes affect trabecular bone structure, and that the consomic strain B6-Chr15MSM, carrying MSM/Ms-derived chromosome 15 (Chr15), has the lowest values for the parameters BV/TV, Tb.N, and Conn.D, and the highest values for the parameters Tb.Sp and SMI. Subsequent phenotyping of subconsomic strains for Chr15 mapped four novel trabecular bone structure-related QTL (Tbsq1-4) on mouse Chr15. These results collectively indicate that genetic regulation of trabecular bone structure is highly complex, and that even in the single Chr15, the combined action of the four Tbsqs controls the fragility of trabecular bone. Given that Tbsq4 is syntenic to human Chr 12q12-13.3, where several bone-related SNPs are assigned, further study of Tbsq4 should facilitate our understanding of the genetic regulation of bone formation in humans.


Subject(s)
Cancellous Bone/diagnostic imaging , Mice, Inbred Strains/genetics , Animals , Chromosomes, Human, Pair 15/genetics , Genotype , Humans , Mice , Phenotype , Quantitative Trait Loci , X-Ray Microtomography
4.
Hum Mol Genet ; 22(12): 2471-81, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23449628

ABSTRACT

Partial trisomy distal 4q (denoted 4q+) is a human chromosomal disorder caused by duplication of the distal end of the long arm of chromosome 4 (Chr4). This disorder manifests typical phenotypes, including craniofacial, renal, heart and thumb developmental defects. Although these clinical features are likely caused by a dosage imbalance in the gene network involving the trisomic region, the causative gene or genes and the molecular bases are largely unknown. Here, we report mouse Recombination-induced mutation 4 (Rim4) as a model animal of 4q+. The Rim4 genome contains an insertion of a 6.5 Mb fragment from mouse chromosome 8 into chromosome 6. This insertion fragment contains 17 genes, including Hand2, that encode the basic helix-loop-helix transcription factor and is syntenic to the distal end of human Chr4, 4q32.3 to 4q34.1, which is responsible for 4q+. A comparison of phenotypes between patients with Rim4 and 4q+ revealed that Rim4 shows direct parallels with many phenotypes of 4q+ such as craniofacial, heart, cervical vertebra and limb deformities. Rebalancing the gene dosage by a genetic cross with Hand2 knockout mice ameliorated symptoms of the heart and limb deformities of Rim4. Conversely, an increase in copy number of Hand2 in wild-type mice recaptures the heart and limb deformities of Rim4. Our results collectively demonstrate that overdosage of Hand2 is a major cause for at least the limb and heart phenotypes of 4q+ and that mouse Rim4 provides a unique animal model for understanding the molecular bases underlying the complex phenotypes of 4q+.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Dosage , Heart Defects, Congenital/genetics , Limb Deformities, Congenital/genetics , Trisomy/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chromosome Disorders/genetics , Chromosome Disorders/metabolism , Chromosomes, Human, Pair 4/genetics , Disease Models, Animal , Extremities/growth & development , Female , Heart/growth & development , Heart Defects, Congenital/metabolism , Humans , Limb Deformities, Congenital/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
5.
Eur J Cell Biol ; 88(9): 521-9, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19473726

ABSTRACT

We performed comparative proteomic analyses of pituitary tumor-derived cell lines, and found a new protein, preliminarily called hydrophobestin, which was produced only in somatotrophic cells, MtT/S, but not in non-hormone-producing cells, MtT/E. Hydrophobestin is encoded by the cell growth regulatory gene, Cgr11, which is known to have growth-suppressive potential in several cell lines. We have now sought to investigate the underlying events responsible for cell growth inhibition by hydrophobestin. Immunocytochemisty revealed that hydrophobestin is localized in the Golgi apparatus of MtT/S cells and Cgr11-transfected MtT/E cells. The apparent molecular mass of the protein was determined by Westerm blot analysis of conditioned culture medium of MtT/S cells. Our data show that hydrophobestin is a secretory protein localized in the pituitary gland, adrenal gland, digestive tract, reproductive organs, and kidney. We also found that hydrophobestin promotes compact monolayer cell aggregates in PC12 cells transfected with Cgr11, however, non-transfected, vector- or EF-hand motif-deleted (DeltaEF) Cgr11-transfected PC12 cells cannot form compact cell colonies. An antibody recognizing EF-hand motifs showed strong staining in the intercellular space of both Cgr11-transfected PC12 cells and MtT/S cells (Cgr11-expressing cells). Our data suggest that hydrophobestin-mediated cell adhesion may regulate cell growth through compact cell attachment.


Subject(s)
Cell Adhesion Molecules/genetics , Cell Adhesion , Animals , Cell Adhesion Molecules/metabolism , Cell Line , Fluorescent Antibody Technique , Gene Expression , Immunohistochemistry , PC12 Cells , Rats , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...