Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 62(17): 4032-4048, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35960209

ABSTRACT

Automatic design of molecules with specific chemical and biochemical properties is an important process in material informatics and computational drug discovery. In this study, we designed a novel coarse-grained tree representation of molecules (Reversible Junction Tree; "RJT") for the aforementioned purposes, which is reversely convertible to the original molecule without external information. By leveraging this representation, we further formulated the molecular design and optimization problem as a tree-structure construction using deep reinforcement learning ("RJT-RL"). In this method, all of the intermediate and final states of reinforcement learning are convertible to valid molecules, which could efficiently guide the optimization process in simple benchmark tasks. We further examined the multiobjective optimization and fine-tuning of the reinforcement learning models using RJT-RL, demonstrating the applicability of our method to more realistic tasks in drug discovery.


Subject(s)
Deep Learning , Reinforcement, Psychology , Drug Discovery , Learning
2.
Nat Commun ; 13(1): 2991, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637178

ABSTRACT

Computational material discovery is under intense study owing to its ability to explore the vast space of chemical systems. Neural network potentials (NNPs) have been shown to be particularly effective in conducting atomistic simulations for such purposes. However, existing NNPs are generally designed for narrow target materials, making them unsuitable for broader applications in material discovery. Here we report a development of universal NNP called PreFerred Potential (PFP), which is able to handle any combination of 45 elements. Particular emphasis is placed on the datasets, which include a diverse set of virtual structures used to attain the universality. We demonstrated the applicability of PFP in selected domains: lithium diffusion in LiFeSO4F, molecular adsorption in metal-organic frameworks, an order-disorder transition of Cu-Au alloys, and material discovery for a Fischer-Tropsch catalyst. They showcase the power of PFP, and this technology provides a highly useful tool for material discovery.


Subject(s)
Metal-Organic Frameworks , Neural Networks, Computer , Adsorption , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...